Update app.py
Browse files
app.py
CHANGED
|
@@ -8,7 +8,11 @@ import nltk
|
|
| 8 |
import os
|
| 9 |
|
| 10 |
# Download NLTK data for sumy
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
def extract_text_from_pdf(pdf_file):
|
| 14 |
"""
|
|
@@ -18,14 +22,16 @@ def extract_text_from_pdf(pdf_file):
|
|
| 18 |
pdf_file: Uploaded PDF file.
|
| 19 |
|
| 20 |
Returns:
|
| 21 |
-
str: Extracted text
|
| 22 |
"""
|
| 23 |
try:
|
| 24 |
with pdfplumber.open(pdf_file) as pdf:
|
| 25 |
text = ""
|
| 26 |
for page in pdf.pages:
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
| 29 |
except Exception as e:
|
| 30 |
return f"Error extracting text: {str(e)}"
|
| 31 |
|
|
@@ -38,23 +44,19 @@ def summarize_text(text, sentences_count=12):
|
|
| 38 |
sentences_count (int): Number of sentences in summary (approx. 3 sentences per paragraph).
|
| 39 |
|
| 40 |
Returns:
|
| 41 |
-
str: Summarized text.
|
| 42 |
"""
|
| 43 |
try:
|
| 44 |
-
|
|
|
|
| 45 |
parser = PlaintextParser.from_string(text, Tokenizer("english"))
|
| 46 |
summarizer = LsaSummarizer()
|
| 47 |
-
|
| 48 |
-
# Summarize to specified number of sentences
|
| 49 |
summary = summarizer(parser.document, sentences_count)
|
| 50 |
-
|
| 51 |
-
# Combine sentences and format into paragraphs (approx. 3 sentences per paragraph)
|
| 52 |
summary_text = ""
|
| 53 |
for i, sentence in enumerate(summary):
|
| 54 |
summary_text += str(sentence) + " "
|
| 55 |
-
if (i + 1) % 3 == 0:
|
| 56 |
summary_text += "\n\n"
|
| 57 |
-
|
| 58 |
return summary_text.strip() if summary_text else "No summary generated."
|
| 59 |
except Exception as e:
|
| 60 |
return f"Error summarizing text: {str(e)}"
|
|
@@ -68,18 +70,18 @@ def pdf_to_speech(pdf_file, lang="en"):
|
|
| 68 |
lang (str): Language code (default is 'en' for English).
|
| 69 |
|
| 70 |
Returns:
|
| 71 |
-
tuple: (Path to audio file, summarized text
|
| 72 |
"""
|
| 73 |
try:
|
| 74 |
# Extract text from PDF
|
| 75 |
text = extract_text_from_pdf(pdf_file)
|
| 76 |
if "Error" in text:
|
| 77 |
-
return
|
| 78 |
|
| 79 |
-
# Summarize text
|
| 80 |
summarized_text = summarize_text(text, sentences_count=12)
|
| 81 |
-
if "Error" in summarized_text:
|
| 82 |
-
return
|
| 83 |
|
| 84 |
# Create gTTS object
|
| 85 |
tts = gTTS(text=summarized_text, lang=lang, slow=False)
|
|
@@ -91,8 +93,7 @@ def pdf_to_speech(pdf_file, lang="en"):
|
|
| 91 |
return output_file, summarized_text
|
| 92 |
|
| 93 |
except Exception as e:
|
| 94 |
-
|
| 95 |
-
return error_msg, error_msg
|
| 96 |
|
| 97 |
# Define Gradio interface
|
| 98 |
demo = gr.Interface(
|
|
|
|
| 8 |
import os
|
| 9 |
|
| 10 |
# Download NLTK data for sumy
|
| 11 |
+
try:
|
| 12 |
+
nltk.download('punkt')
|
| 13 |
+
nltk.download('punkt_tab')
|
| 14 |
+
except Exception as e:
|
| 15 |
+
print(f"Error downloading NLTK data: {str(e)}")
|
| 16 |
|
| 17 |
def extract_text_from_pdf(pdf_file):
|
| 18 |
"""
|
|
|
|
| 22 |
pdf_file: Uploaded PDF file.
|
| 23 |
|
| 24 |
Returns:
|
| 25 |
+
str: Extracted text or error message.
|
| 26 |
"""
|
| 27 |
try:
|
| 28 |
with pdfplumber.open(pdf_file) as pdf:
|
| 29 |
text = ""
|
| 30 |
for page in pdf.pages:
|
| 31 |
+
page_text = page.extract_text()
|
| 32 |
+
if page_text:
|
| 33 |
+
text += page_text + " "
|
| 34 |
+
return text.strip() if text else "No text could be extracted from the PDF."
|
| 35 |
except Exception as e:
|
| 36 |
return f"Error extracting text: {str(e)}"
|
| 37 |
|
|
|
|
| 44 |
sentences_count (int): Number of sentences in summary (approx. 3 sentences per paragraph).
|
| 45 |
|
| 46 |
Returns:
|
| 47 |
+
str: Summarized text or error message.
|
| 48 |
"""
|
| 49 |
try:
|
| 50 |
+
if len(text.split()) < 50:
|
| 51 |
+
return "Text is too short to summarize."
|
| 52 |
parser = PlaintextParser.from_string(text, Tokenizer("english"))
|
| 53 |
summarizer = LsaSummarizer()
|
|
|
|
|
|
|
| 54 |
summary = summarizer(parser.document, sentences_count)
|
|
|
|
|
|
|
| 55 |
summary_text = ""
|
| 56 |
for i, sentence in enumerate(summary):
|
| 57 |
summary_text += str(sentence) + " "
|
| 58 |
+
if (i + 1) % 3 == 0:
|
| 59 |
summary_text += "\n\n"
|
|
|
|
| 60 |
return summary_text.strip() if summary_text else "No summary generated."
|
| 61 |
except Exception as e:
|
| 62 |
return f"Error summarizing text: {str(e)}"
|
|
|
|
| 70 |
lang (str): Language code (default is 'en' for English).
|
| 71 |
|
| 72 |
Returns:
|
| 73 |
+
tuple: (Path to audio file or None, summarized text or error message).
|
| 74 |
"""
|
| 75 |
try:
|
| 76 |
# Extract text from PDF
|
| 77 |
text = extract_text_from_pdf(pdf_file)
|
| 78 |
if "Error" in text:
|
| 79 |
+
return None, text
|
| 80 |
|
| 81 |
+
# Summarize text
|
| 82 |
summarized_text = summarize_text(text, sentences_count=12)
|
| 83 |
+
if "Error" in summarized_text or "too short" in summarized_text:
|
| 84 |
+
return None, summarized_text
|
| 85 |
|
| 86 |
# Create gTTS object
|
| 87 |
tts = gTTS(text=summarized_text, lang=lang, slow=False)
|
|
|
|
| 93 |
return output_file, summarized_text
|
| 94 |
|
| 95 |
except Exception as e:
|
| 96 |
+
return None, f"An error occurred: {str(e)}"
|
|
|
|
| 97 |
|
| 98 |
# Define Gradio interface
|
| 99 |
demo = gr.Interface(
|