Update app.py
Browse files
app.py
CHANGED
|
@@ -1,8 +1,15 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from gtts import gTTS
|
| 3 |
import pdfplumber
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import os
|
| 5 |
|
|
|
|
|
|
|
|
|
|
| 6 |
def extract_text_from_pdf(pdf_file):
|
| 7 |
"""
|
| 8 |
Extract text from a PDF file using pdfplumber.
|
|
@@ -22,45 +29,84 @@ def extract_text_from_pdf(pdf_file):
|
|
| 22 |
except Exception as e:
|
| 23 |
return f"Error extracting text: {str(e)}"
|
| 24 |
|
| 25 |
-
def
|
| 26 |
"""
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
Args:
|
| 30 |
pdf_file: Uploaded PDF file.
|
| 31 |
lang (str): Language code (default is 'en' for English).
|
| 32 |
|
| 33 |
Returns:
|
| 34 |
-
|
| 35 |
"""
|
| 36 |
try:
|
| 37 |
# Extract text from PDF
|
| 38 |
text = extract_text_from_pdf(pdf_file)
|
| 39 |
if "Error" in text:
|
| 40 |
-
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
# Create gTTS object
|
| 43 |
-
tts = gTTS(text=
|
| 44 |
|
| 45 |
# Save the audio file
|
| 46 |
output_file = "output.mp3"
|
| 47 |
tts.save(output_file)
|
| 48 |
|
| 49 |
-
return output_file
|
| 50 |
|
| 51 |
except Exception as e:
|
| 52 |
-
|
|
|
|
| 53 |
|
| 54 |
# Define Gradio interface
|
| 55 |
demo = gr.Interface(
|
| 56 |
-
fn=
|
| 57 |
inputs=[
|
| 58 |
gr.File(label="Upload a PDF file", file_types=[".pdf"]),
|
| 59 |
gr.Dropdown(choices=["en", "es", "fr"], label="Select Language", value="en")
|
| 60 |
],
|
| 61 |
-
outputs=
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
| 64 |
)
|
| 65 |
|
| 66 |
# Launch the app
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from gtts import gTTS
|
| 3 |
import pdfplumber
|
| 4 |
+
from sumy.parsers.plaintext import PlaintextParser
|
| 5 |
+
from sumy.nlp.tokenizers import Tokenizer
|
| 6 |
+
from sumy.summarizers.lsa import LsaSummarizer
|
| 7 |
+
import nltk
|
| 8 |
import os
|
| 9 |
|
| 10 |
+
# Download NLTK data for sumy
|
| 11 |
+
nltk.download('punkt')
|
| 12 |
+
|
| 13 |
def extract_text_from_pdf(pdf_file):
|
| 14 |
"""
|
| 15 |
Extract text from a PDF file using pdfplumber.
|
|
|
|
| 29 |
except Exception as e:
|
| 30 |
return f"Error extracting text: {str(e)}"
|
| 31 |
|
| 32 |
+
def summarize_text(text, sentences_count=12):
|
| 33 |
"""
|
| 34 |
+
Summarize text to approximately four paragraphs using sumy LSA summarizer.
|
| 35 |
+
|
| 36 |
+
Args:
|
| 37 |
+
text (str): Text to summarize.
|
| 38 |
+
sentences_count (int): Number of sentences in summary (approx. 3 sentences per paragraph).
|
| 39 |
+
|
| 40 |
+
Returns:
|
| 41 |
+
str: Summarized text.
|
| 42 |
+
"""
|
| 43 |
+
try:
|
| 44 |
+
# Initialize parser and tokenizer
|
| 45 |
+
parser = PlaintextParser.from_string(text, Tokenizer("english"))
|
| 46 |
+
summarizer = LsaSummarizer()
|
| 47 |
+
|
| 48 |
+
# Summarize to specified number of sentences
|
| 49 |
+
summary = summarizer(parser.document, sentences_count)
|
| 50 |
+
|
| 51 |
+
# Combine sentences and format into paragraphs (approx. 3 sentences per paragraph)
|
| 52 |
+
summary_text = ""
|
| 53 |
+
for i, sentence in enumerate(summary):
|
| 54 |
+
summary_text += str(sentence) + " "
|
| 55 |
+
if (i + 1) % 3 == 0: # Add paragraph break every 3 sentences
|
| 56 |
+
summary_text += "\n\n"
|
| 57 |
+
|
| 58 |
+
return summary_text.strip() if summary_text else "No summary generated."
|
| 59 |
+
except Exception as e:
|
| 60 |
+
return f"Error summarizing text: {str(e)}"
|
| 61 |
+
|
| 62 |
+
def pdf_to_speech(pdf_file, lang="en"):
|
| 63 |
+
"""
|
| 64 |
+
Convert text from a PDF to summarized speech using gTTS.
|
| 65 |
|
| 66 |
Args:
|
| 67 |
pdf_file: Uploaded PDF file.
|
| 68 |
lang (str): Language code (default is 'en' for English).
|
| 69 |
|
| 70 |
Returns:
|
| 71 |
+
tuple: (Path to audio file, summarized text) or (error message, error message).
|
| 72 |
"""
|
| 73 |
try:
|
| 74 |
# Extract text from PDF
|
| 75 |
text = extract_text_from_pdf(pdf_file)
|
| 76 |
if "Error" in text:
|
| 77 |
+
return text, text
|
| 78 |
+
|
| 79 |
+
# Summarize text (approx. 12 sentences for 4 paragraphs)
|
| 80 |
+
summarized_text = summarize_text(text, sentences_count=12)
|
| 81 |
+
if "Error" in summarized_text:
|
| 82 |
+
return summarized_text, summarized_text
|
| 83 |
|
| 84 |
# Create gTTS object
|
| 85 |
+
tts = gTTS(text=summarized_text, lang=lang, slow=False)
|
| 86 |
|
| 87 |
# Save the audio file
|
| 88 |
output_file = "output.mp3"
|
| 89 |
tts.save(output_file)
|
| 90 |
|
| 91 |
+
return output_file, summarized_text
|
| 92 |
|
| 93 |
except Exception as e:
|
| 94 |
+
error_msg = f"An error occurred: {str(e)}"
|
| 95 |
+
return error_msg, error_msg
|
| 96 |
|
| 97 |
# Define Gradio interface
|
| 98 |
demo = gr.Interface(
|
| 99 |
+
fn=pdf_to_speech,
|
| 100 |
inputs=[
|
| 101 |
gr.File(label="Upload a PDF file", file_types=[".pdf"]),
|
| 102 |
gr.Dropdown(choices=["en", "es", "fr"], label="Select Language", value="en")
|
| 103 |
],
|
| 104 |
+
outputs=[
|
| 105 |
+
gr.Audio(label="Generated Speech"),
|
| 106 |
+
gr.Textbox(label="Summarized Text")
|
| 107 |
+
],
|
| 108 |
+
title="PDF Summary to Speech",
|
| 109 |
+
description="Upload an English PDF file, select a language, and generate speech from a summarized version (approx. 4 paragraphs). The summarized text is also displayed."
|
| 110 |
)
|
| 111 |
|
| 112 |
# Launch the app
|