Rename planning_agent.py to tools_agent.py
Browse files- planning_agent.py → tools_agent.py +72 -151
planning_agent.py → tools_agent.py
RENAMED
|
@@ -1,41 +1,32 @@
|
|
| 1 |
from typing import Dict, List, Any
|
| 2 |
-
from
|
| 3 |
-
|
| 4 |
import os
|
| 5 |
import json
|
| 6 |
-
import requests
|
| 7 |
|
| 8 |
|
| 9 |
-
@dataclass
|
| 10 |
-
class Interaction:
|
| 11 |
-
"""Record of a single interaction with the agent"""
|
| 12 |
-
timestamp: datetime
|
| 13 |
-
query: str
|
| 14 |
-
plan: Dict[str, Any]
|
| 15 |
-
|
| 16 |
class Agent:
|
| 17 |
-
def __init__(self,
|
| 18 |
-
"""Initialize Agent with empty
|
| 19 |
-
self.
|
| 20 |
-
self.
|
| 21 |
-
|
| 22 |
-
def
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
}
|
| 26 |
-
data = {
|
| 27 |
-
"model": self.model,
|
| 28 |
-
"messages": messages,
|
| 29 |
-
"max_tokens": 150
|
| 30 |
-
}
|
| 31 |
-
response = requests.post("https://api-inference.huggingface.co/v1/chat/completions", headers=headers, data=json.dumps(data))
|
| 32 |
-
print("Original response ", response.json())
|
| 33 |
-
print("\nOriginal response type", type(json.loads(response.choices[0].message.content)))
|
| 34 |
-
# final_response = response.json()['choices'][0]['message']['content'].strip()
|
| 35 |
-
# print("LLM Response ", final_response)
|
| 36 |
|
| 37 |
-
|
|
|
|
|
|
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
def create_system_prompt(self) -> str:
|
| 40 |
"""Create the system prompt for the LLM with available tools."""
|
| 41 |
tools_json = {
|
|
@@ -43,34 +34,26 @@ class Agent:
|
|
| 43 |
"capabilities": [
|
| 44 |
"Using provided tools to help users when necessary",
|
| 45 |
"Responding directly without tools for questions that don't require tool usage",
|
| 46 |
-
"Planning efficient tool usage sequences"
|
| 47 |
-
"If asked by the user, reflecting on the plan and suggesting changes if needed"
|
| 48 |
],
|
| 49 |
"instructions": [
|
| 50 |
"Use tools only when they are necessary for the task",
|
| 51 |
"If a query can be answered directly, respond with a simple message instead of using tools",
|
| 52 |
-
"When tools are needed, plan their usage efficiently to minimize tool calls"
|
| 53 |
-
"If asked by the user, reflect on the plan and suggest changes if needed"
|
| 54 |
],
|
| 55 |
"tools": [
|
| 56 |
{
|
| 57 |
-
"name":
|
| 58 |
-
"description":
|
| 59 |
"parameters": {
|
| 60 |
-
|
| 61 |
-
"type": "
|
| 62 |
-
"description": "
|
| 63 |
-
},
|
| 64 |
-
"from_currency": {
|
| 65 |
-
"type": "str",
|
| 66 |
-
"description": "Source currency code (e.g., USD)"
|
| 67 |
-
},
|
| 68 |
-
"to_currency": {
|
| 69 |
-
"type": "str",
|
| 70 |
-
"description": "Target currency code (e.g., EUR)"
|
| 71 |
}
|
|
|
|
| 72 |
}
|
| 73 |
}
|
|
|
|
| 74 |
],
|
| 75 |
"response_format": {
|
| 76 |
"type": "json",
|
|
@@ -170,129 +153,67 @@ class Agent:
|
|
| 170 |
|
| 171 |
return f"""You are an AI assistant that helps users by providing direct answers or using tools when necessary.
|
| 172 |
Configuration, instructions, and available tools are provided in JSON format below:
|
|
|
|
| 173 |
{json.dumps(tools_json, indent=2)}
|
|
|
|
| 174 |
Always respond with a JSON object following the response_format schema above.
|
| 175 |
Remember to use tools only when they are actually needed for the task."""
|
| 176 |
|
| 177 |
def plan(self, user_query: str) -> Dict:
|
| 178 |
-
"""Use LLM to create a plan
|
| 179 |
messages = [
|
| 180 |
{"role": "system", "content": self.create_system_prompt()},
|
| 181 |
{"role": "user", "content": user_query}
|
| 182 |
]
|
| 183 |
-
|
| 184 |
-
response = self._query_llm(messages=messages)
|
| 185 |
-
|
| 186 |
-
try:
|
| 187 |
-
plan = json.loads(response)
|
| 188 |
-
# Store the interaction immediately after planning
|
| 189 |
-
interaction = Interaction(
|
| 190 |
-
timestamp=datetime.now(),
|
| 191 |
-
query=user_query,
|
| 192 |
-
plan=plan
|
| 193 |
-
)
|
| 194 |
-
self.interactions.append(interaction)
|
| 195 |
-
return plan
|
| 196 |
-
except json.JSONDecodeError:
|
| 197 |
-
raise ValueError("Failed to parse LLM response as JSON")
|
| 198 |
-
|
| 199 |
-
def reflect_on_plan(self) -> Dict[str, Any]:
|
| 200 |
-
"""Reflect on the most recent plan using interaction history."""
|
| 201 |
-
if not self.interactions:
|
| 202 |
-
return {"reflection": "No plan to reflect on", "requires_changes": False}
|
| 203 |
-
|
| 204 |
-
latest_interaction = self.interactions[-1]
|
| 205 |
-
|
| 206 |
-
reflection_prompt = {
|
| 207 |
-
"task": "reflection",
|
| 208 |
-
"context": {
|
| 209 |
-
"user_query": latest_interaction.query,
|
| 210 |
-
"generated_plan": latest_interaction.plan
|
| 211 |
-
},
|
| 212 |
-
"instructions": [
|
| 213 |
-
"Review the generated plan for potential improvements",
|
| 214 |
-
"Consider if the chosen tools are appropriate",
|
| 215 |
-
"Verify tool parameters are correct",
|
| 216 |
-
"Check if the plan is efficient",
|
| 217 |
-
"Determine if tools are actually needed"
|
| 218 |
-
],
|
| 219 |
-
"response_format": {
|
| 220 |
-
"type": "json",
|
| 221 |
-
"schema": {
|
| 222 |
-
"requires_changes": {
|
| 223 |
-
"type": "boolean",
|
| 224 |
-
"description": "whether the plan needs modifications"
|
| 225 |
-
},
|
| 226 |
-
"reflection": {
|
| 227 |
-
"type": "string",
|
| 228 |
-
"description": "explanation of what changes are needed or why no changes are needed"
|
| 229 |
-
},
|
| 230 |
-
"suggestions": {
|
| 231 |
-
"type": "array",
|
| 232 |
-
"items": {"type": "string"},
|
| 233 |
-
"description": "specific suggestions for improvements",
|
| 234 |
-
"optional": True
|
| 235 |
-
}
|
| 236 |
-
}
|
| 237 |
-
}
|
| 238 |
-
}
|
| 239 |
-
|
| 240 |
-
messages = [
|
| 241 |
-
{"role": "system", "content": self.create_system_prompt()},
|
| 242 |
-
{"role": "user", "content": json.dumps(reflection_prompt, indent=2)}
|
| 243 |
-
]
|
| 244 |
|
| 245 |
-
response = self.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
|
| 247 |
try:
|
| 248 |
-
return json.loads(response)
|
| 249 |
except json.JSONDecodeError:
|
| 250 |
-
|
| 251 |
|
| 252 |
def execute(self, user_query: str) -> str:
|
| 253 |
-
"""Execute the full pipeline: plan
|
| 254 |
try:
|
| 255 |
-
|
| 256 |
-
initial_plan = self.plan(user_query)
|
| 257 |
-
|
| 258 |
-
# Reflect on the plan using memory
|
| 259 |
-
reflection = self.reflect_on_plan()
|
| 260 |
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
# Generate new plan based on reflection
|
| 264 |
-
messages = [
|
| 265 |
-
{"role": "system", "content": self.create_system_prompt()},
|
| 266 |
-
{"role": "user", "content": user_query},
|
| 267 |
-
{"role": "assistant", "content": json.dumps(initial_plan)},
|
| 268 |
-
{"role": "user", "content": f"Please revise the plan based on this feedback: {json.dumps(reflection)}"}
|
| 269 |
-
]
|
| 270 |
-
|
| 271 |
-
response = self._query_llm(messages=messages)
|
| 272 |
-
|
| 273 |
-
try:
|
| 274 |
-
final_plan = json.loads(response)
|
| 275 |
-
except json.JSONDecodeError:
|
| 276 |
-
final_plan = initial_plan # Fallback to initial plan if parsing fails
|
| 277 |
-
else:
|
| 278 |
-
final_plan = initial_plan
|
| 279 |
|
| 280 |
-
#
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
"
|
| 284 |
-
"
|
| 285 |
-
|
|
|
|
| 286 |
|
| 287 |
-
#
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
Reflection: {reflection.get('reflection', 'No improvements suggested')}
|
| 292 |
-
Final Plan: {'. '.join(final_plan['plan'])}"""
|
| 293 |
-
else:
|
| 294 |
-
return f"""Response: {final_plan['direct_response']}
|
| 295 |
-
Reflection: {reflection.get('reflection', 'No improvements suggested')}"""
|
| 296 |
|
| 297 |
except Exception as e:
|
| 298 |
return f"Error executing plan: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from typing import Dict, List, Any
|
| 2 |
+
from tool_registry import Tool
|
| 3 |
+
import openai
|
| 4 |
import os
|
| 5 |
import json
|
|
|
|
| 6 |
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
class Agent:
|
| 9 |
+
def __init__(self, client):
|
| 10 |
+
"""Initialize Agent with empty tool registry."""
|
| 11 |
+
self.client = client
|
| 12 |
+
self.tools: Dict[str, Tool] = {}
|
| 13 |
+
|
| 14 |
+
def add_tool(self, tool: Tool) -> None:
|
| 15 |
+
"""Register a new tool with the agent."""
|
| 16 |
+
self.tools[tool.name] = tool
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
def get_available_tools(self) -> List[str]:
|
| 19 |
+
"""Get list of available tool descriptions."""
|
| 20 |
+
return [f"{tool.name}: {tool.description}" for tool in self.tools.values()]
|
| 21 |
|
| 22 |
+
def use_tool(self, tool_name: str, **kwargs: Any) -> str:
|
| 23 |
+
"""Execute a specific tool with given arguments."""
|
| 24 |
+
if tool_name not in self.tools:
|
| 25 |
+
raise ValueError(f"Tool '{tool_name}' not found. Available tools: {list(self.tools.keys())}")
|
| 26 |
+
|
| 27 |
+
tool = self.tools[tool_name]
|
| 28 |
+
return tool.func(**kwargs)
|
| 29 |
+
|
| 30 |
def create_system_prompt(self) -> str:
|
| 31 |
"""Create the system prompt for the LLM with available tools."""
|
| 32 |
tools_json = {
|
|
|
|
| 34 |
"capabilities": [
|
| 35 |
"Using provided tools to help users when necessary",
|
| 36 |
"Responding directly without tools for questions that don't require tool usage",
|
| 37 |
+
"Planning efficient tool usage sequences"
|
|
|
|
| 38 |
],
|
| 39 |
"instructions": [
|
| 40 |
"Use tools only when they are necessary for the task",
|
| 41 |
"If a query can be answered directly, respond with a simple message instead of using tools",
|
| 42 |
+
"When tools are needed, plan their usage efficiently to minimize tool calls"
|
|
|
|
| 43 |
],
|
| 44 |
"tools": [
|
| 45 |
{
|
| 46 |
+
"name": tool.name,
|
| 47 |
+
"description": tool.description,
|
| 48 |
"parameters": {
|
| 49 |
+
name: {
|
| 50 |
+
"type": info["type"],
|
| 51 |
+
"description": info["description"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
}
|
| 53 |
+
for name, info in tool.parameters.items()
|
| 54 |
}
|
| 55 |
}
|
| 56 |
+
for tool in self.tools.values()
|
| 57 |
],
|
| 58 |
"response_format": {
|
| 59 |
"type": "json",
|
|
|
|
| 153 |
|
| 154 |
return f"""You are an AI assistant that helps users by providing direct answers or using tools when necessary.
|
| 155 |
Configuration, instructions, and available tools are provided in JSON format below:
|
| 156 |
+
|
| 157 |
{json.dumps(tools_json, indent=2)}
|
| 158 |
+
|
| 159 |
Always respond with a JSON object following the response_format schema above.
|
| 160 |
Remember to use tools only when they are actually needed for the task."""
|
| 161 |
|
| 162 |
def plan(self, user_query: str) -> Dict:
|
| 163 |
+
"""Use LLM to create a plan for tool usage."""
|
| 164 |
messages = [
|
| 165 |
{"role": "system", "content": self.create_system_prompt()},
|
| 166 |
{"role": "user", "content": user_query}
|
| 167 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
+
response = self.client.chat.completions.create(
|
| 170 |
+
model="gpt-4o-mini",
|
| 171 |
+
messages=messages,
|
| 172 |
+
temperature=0
|
| 173 |
+
)
|
| 174 |
|
| 175 |
try:
|
| 176 |
+
return json.loads(response.choices[0].message.content)
|
| 177 |
except json.JSONDecodeError:
|
| 178 |
+
raise ValueError("Failed to parse LLM response as JSON")
|
| 179 |
|
| 180 |
def execute(self, user_query: str) -> str:
|
| 181 |
+
"""Execute the full pipeline: plan and execute tools."""
|
| 182 |
try:
|
| 183 |
+
plan = self.plan(user_query)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
|
| 185 |
+
if not plan.get("requires_tools", True):
|
| 186 |
+
return plan["direct_response"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
+
# Execute each tool in sequence
|
| 189 |
+
results = []
|
| 190 |
+
for tool_call in plan["tool_calls"]:
|
| 191 |
+
tool_name = tool_call["tool"]
|
| 192 |
+
tool_args = tool_call["args"]
|
| 193 |
+
result = self.use_tool(tool_name, **tool_args)
|
| 194 |
+
results.append(result)
|
| 195 |
|
| 196 |
+
# Combine results
|
| 197 |
+
return f"""Thought: {plan['thought']}
|
| 198 |
+
Plan: {'. '.join(plan['plan'])}
|
| 199 |
+
Results: {'. '.join(results)}"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
except Exception as e:
|
| 202 |
return f"Error executing plan: {str(e)}"
|
| 203 |
+
|
| 204 |
+
def main():
|
| 205 |
+
from tools import convert_currency
|
| 206 |
+
|
| 207 |
+
agent = Agent()
|
| 208 |
+
agent.add_tool(convert_currency)
|
| 209 |
+
|
| 210 |
+
query_list = ["I am traveling to Japan from Serbia, I have 1500 of local currency, how much of Japaese currency will I be able to get?",
|
| 211 |
+
"How are you doing?"]
|
| 212 |
+
|
| 213 |
+
for query in query_list:
|
| 214 |
+
print(f"\nQuery: {query}")
|
| 215 |
+
result = agent.execute(query)
|
| 216 |
+
print(result)
|
| 217 |
+
|
| 218 |
+
if __name__ == "__main__":
|
| 219 |
+
main()
|