Spaces:
Sleeping
Sleeping
Create models.py
Browse files
models.py
ADDED
|
@@ -0,0 +1,846 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import logging
|
| 3 |
+
import os
|
| 4 |
+
import random
|
| 5 |
+
from copy import deepcopy
|
| 6 |
+
from dataclasses import asdict, dataclass
|
| 7 |
+
from enum import Enum
|
| 8 |
+
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
|
| 9 |
+
|
| 10 |
+
from huggingface_hub import InferenceClient
|
| 11 |
+
from huggingface_hub.utils import is_torch_available
|
| 12 |
+
from PIL import Image
|
| 13 |
+
|
| 14 |
+
from smolagents.tools import Tool
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
if TYPE_CHECKING:
|
| 19 |
+
from transformers import StoppingCriteriaList
|
| 20 |
+
|
| 21 |
+
logger = logging.getLogger(__name__)
|
| 22 |
+
|
| 23 |
+
DEFAULT_JSONAGENT_REGEX_GRAMMAR = {
|
| 24 |
+
"type": "regex",
|
| 25 |
+
"value": 'Thought: .+?\\nAction:\\n\\{\\n\\s{4}"action":\\s"[^"\\n]+",\\n\\s{4}"action_input":\\s"[^"\\n]+"\\n\\}\\n<end_code>',
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
DEFAULT_CODEAGENT_REGEX_GRAMMAR = {
|
| 29 |
+
"type": "regex",
|
| 30 |
+
"value": "Thought: .+?\\nCode:\\n```(?:py|python)?\\n(?:.|\\s)+?\\n```<end_code>",
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def _is_package_available(package_name: str) -> bool:
|
| 35 |
+
try:
|
| 36 |
+
importlib.metadata.version(package_name)
|
| 37 |
+
return True
|
| 38 |
+
except importlib.metadata.PackageNotFoundError:
|
| 39 |
+
return False
|
| 40 |
+
|
| 41 |
+
def encode_image_base64(image):
|
| 42 |
+
buffered = BytesIO()
|
| 43 |
+
image.save(buffered, format="PNG")
|
| 44 |
+
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def make_image_url(base64_image):
|
| 48 |
+
return f"data:image/png;base64,{base64_image}"
|
| 49 |
+
|
| 50 |
+
def get_dict_from_nested_dataclasses(obj, ignore_key=None):
|
| 51 |
+
def convert(obj):
|
| 52 |
+
if hasattr(obj, "__dataclass_fields__"):
|
| 53 |
+
return {k: convert(v) for k, v in asdict(obj).items() if k != ignore_key}
|
| 54 |
+
return obj
|
| 55 |
+
|
| 56 |
+
return convert(obj)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
@dataclass
|
| 60 |
+
class ChatMessageToolCallDefinition:
|
| 61 |
+
arguments: Any
|
| 62 |
+
name: str
|
| 63 |
+
description: Optional[str] = None
|
| 64 |
+
|
| 65 |
+
@classmethod
|
| 66 |
+
def from_hf_api(cls, tool_call_definition) -> "ChatMessageToolCallDefinition":
|
| 67 |
+
return cls(
|
| 68 |
+
arguments=tool_call_definition.arguments,
|
| 69 |
+
name=tool_call_definition.name,
|
| 70 |
+
description=tool_call_definition.description,
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
@dataclass
|
| 75 |
+
class ChatMessageToolCall:
|
| 76 |
+
function: ChatMessageToolCallDefinition
|
| 77 |
+
id: str
|
| 78 |
+
type: str
|
| 79 |
+
|
| 80 |
+
@classmethod
|
| 81 |
+
def from_hf_api(cls, tool_call) -> "ChatMessageToolCall":
|
| 82 |
+
return cls(
|
| 83 |
+
function=ChatMessageToolCallDefinition.from_hf_api(tool_call.function),
|
| 84 |
+
id=tool_call.id,
|
| 85 |
+
type=tool_call.type,
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
@dataclass
|
| 90 |
+
class ChatMessage:
|
| 91 |
+
role: str
|
| 92 |
+
content: Optional[str] = None
|
| 93 |
+
tool_calls: Optional[List[ChatMessageToolCall]] = None
|
| 94 |
+
raw: Optional[Any] = None # Stores the raw output from the API
|
| 95 |
+
|
| 96 |
+
def model_dump_json(self):
|
| 97 |
+
return json.dumps(get_dict_from_nested_dataclasses(self, ignore_key="raw"))
|
| 98 |
+
|
| 99 |
+
@classmethod
|
| 100 |
+
def from_hf_api(cls, message, raw) -> "ChatMessage":
|
| 101 |
+
tool_calls = None
|
| 102 |
+
if getattr(message, "tool_calls", None) is not None:
|
| 103 |
+
tool_calls = [ChatMessageToolCall.from_hf_api(tool_call) for tool_call in message.tool_calls]
|
| 104 |
+
return cls(role=message.role, content=message.content, tool_calls=tool_calls, raw=raw)
|
| 105 |
+
|
| 106 |
+
@classmethod
|
| 107 |
+
def from_dict(cls, data: dict) -> "ChatMessage":
|
| 108 |
+
if data.get("tool_calls"):
|
| 109 |
+
tool_calls = [
|
| 110 |
+
ChatMessageToolCall(
|
| 111 |
+
function=ChatMessageToolCallDefinition(**tc["function"]), id=tc["id"], type=tc["type"]
|
| 112 |
+
)
|
| 113 |
+
for tc in data["tool_calls"]
|
| 114 |
+
]
|
| 115 |
+
data["tool_calls"] = tool_calls
|
| 116 |
+
return cls(**data)
|
| 117 |
+
|
| 118 |
+
def dict(self):
|
| 119 |
+
return json.dumps(get_dict_from_nested_dataclasses(self))
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def parse_json_if_needed(arguments: Union[str, dict]) -> Union[str, dict]:
|
| 123 |
+
if isinstance(arguments, dict):
|
| 124 |
+
return arguments
|
| 125 |
+
else:
|
| 126 |
+
try:
|
| 127 |
+
return json.loads(arguments)
|
| 128 |
+
except Exception:
|
| 129 |
+
return arguments
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def parse_tool_args_if_needed(message: ChatMessage) -> ChatMessage:
|
| 133 |
+
for tool_call in message.tool_calls:
|
| 134 |
+
tool_call.function.arguments = parse_json_if_needed(tool_call.function.arguments)
|
| 135 |
+
return message
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
class MessageRole(str, Enum):
|
| 139 |
+
USER = "user"
|
| 140 |
+
ASSISTANT = "assistant"
|
| 141 |
+
SYSTEM = "system"
|
| 142 |
+
TOOL_CALL = "tool-call"
|
| 143 |
+
TOOL_RESPONSE = "tool-response"
|
| 144 |
+
|
| 145 |
+
@classmethod
|
| 146 |
+
def roles(cls):
|
| 147 |
+
return [r.value for r in cls]
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
tool_role_conversions = {
|
| 151 |
+
MessageRole.TOOL_CALL: MessageRole.ASSISTANT,
|
| 152 |
+
MessageRole.TOOL_RESPONSE: MessageRole.USER,
|
| 153 |
+
}
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
def get_tool_json_schema(tool: Tool) -> Dict:
|
| 157 |
+
properties = deepcopy(tool.inputs)
|
| 158 |
+
required = []
|
| 159 |
+
for key, value in properties.items():
|
| 160 |
+
if value["type"] == "any":
|
| 161 |
+
value["type"] = "string"
|
| 162 |
+
if not ("nullable" in value and value["nullable"]):
|
| 163 |
+
required.append(key)
|
| 164 |
+
return {
|
| 165 |
+
"type": "function",
|
| 166 |
+
"function": {
|
| 167 |
+
"name": tool.name,
|
| 168 |
+
"description": tool.description,
|
| 169 |
+
"parameters": {
|
| 170 |
+
"type": "object",
|
| 171 |
+
"properties": properties,
|
| 172 |
+
"required": required,
|
| 173 |
+
},
|
| 174 |
+
},
|
| 175 |
+
}
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
def remove_stop_sequences(content: str, stop_sequences: List[str]) -> str:
|
| 179 |
+
for stop_seq in stop_sequences:
|
| 180 |
+
if content[-len(stop_seq) :] == stop_seq:
|
| 181 |
+
content = content[: -len(stop_seq)]
|
| 182 |
+
return content
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
def get_clean_message_list(
|
| 186 |
+
message_list: List[Dict[str, str]],
|
| 187 |
+
role_conversions: Dict[MessageRole, MessageRole] = {},
|
| 188 |
+
convert_images_to_image_urls: bool = False,
|
| 189 |
+
flatten_messages_as_text: bool = False,
|
| 190 |
+
) -> List[Dict[str, str]]:
|
| 191 |
+
"""
|
| 192 |
+
Subsequent messages with the same role will be concatenated to a single message.
|
| 193 |
+
output_message_list is a list of messages that will be used to generate the final message that is chat template compatible with transformers LLM chat template.
|
| 194 |
+
|
| 195 |
+
Args:
|
| 196 |
+
message_list (`list[dict[str, str]]`): List of chat messages.
|
| 197 |
+
role_conversions (`dict[MessageRole, MessageRole]`, *optional* ): Mapping to convert roles.
|
| 198 |
+
convert_images_to_image_urls (`bool`, default `False`): Whether to convert images to image URLs.
|
| 199 |
+
flatten_messages_as_text (`bool`, default `False`): Whether to flatten messages as text.
|
| 200 |
+
"""
|
| 201 |
+
output_message_list = []
|
| 202 |
+
message_list = deepcopy(message_list) # Avoid modifying the original list
|
| 203 |
+
for message in message_list:
|
| 204 |
+
role = message["role"]
|
| 205 |
+
if role not in MessageRole.roles():
|
| 206 |
+
raise ValueError(f"Incorrect role {role}, only {MessageRole.roles()} are supported for now.")
|
| 207 |
+
|
| 208 |
+
if role in role_conversions:
|
| 209 |
+
message["role"] = role_conversions[role]
|
| 210 |
+
# encode images if needed
|
| 211 |
+
if isinstance(message["content"], list):
|
| 212 |
+
for element in message["content"]:
|
| 213 |
+
if element["type"] == "image":
|
| 214 |
+
assert not flatten_messages_as_text, f"Cannot use images with {flatten_messages_as_text=}"
|
| 215 |
+
if convert_images_to_image_urls:
|
| 216 |
+
element.update(
|
| 217 |
+
{
|
| 218 |
+
"type": "image_url",
|
| 219 |
+
"image_url": {"url": make_image_url(encode_image_base64(element.pop("image")))},
|
| 220 |
+
}
|
| 221 |
+
)
|
| 222 |
+
else:
|
| 223 |
+
element["image"] = encode_image_base64(element["image"])
|
| 224 |
+
|
| 225 |
+
if len(output_message_list) > 0 and message["role"] == output_message_list[-1]["role"]:
|
| 226 |
+
assert isinstance(message["content"], list), "Error: wrong content:" + str(message["content"])
|
| 227 |
+
if flatten_messages_as_text:
|
| 228 |
+
output_message_list[-1]["content"] += message["content"][0]["text"]
|
| 229 |
+
else:
|
| 230 |
+
output_message_list[-1]["content"] += message["content"]
|
| 231 |
+
else:
|
| 232 |
+
if flatten_messages_as_text:
|
| 233 |
+
content = message["content"][0]["text"]
|
| 234 |
+
else:
|
| 235 |
+
content = message["content"]
|
| 236 |
+
output_message_list.append({"role": message["role"], "content": content})
|
| 237 |
+
return output_message_list
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
class Model:
|
| 241 |
+
def __init__(self, **kwargs):
|
| 242 |
+
self.last_input_token_count = None
|
| 243 |
+
self.last_output_token_count = None
|
| 244 |
+
self.kwargs = kwargs
|
| 245 |
+
|
| 246 |
+
def _prepare_completion_kwargs(
|
| 247 |
+
self,
|
| 248 |
+
messages: List[Dict[str, str]],
|
| 249 |
+
stop_sequences: Optional[List[str]] = None,
|
| 250 |
+
grammar: Optional[str] = None,
|
| 251 |
+
tools_to_call_from: Optional[List[Tool]] = None,
|
| 252 |
+
custom_role_conversions: Optional[Dict[str, str]] = None,
|
| 253 |
+
convert_images_to_image_urls: bool = False,
|
| 254 |
+
flatten_messages_as_text: bool = False,
|
| 255 |
+
**kwargs,
|
| 256 |
+
) -> Dict:
|
| 257 |
+
"""
|
| 258 |
+
Prepare parameters required for model invocation, handling parameter priorities.
|
| 259 |
+
|
| 260 |
+
Parameter priority from high to low:
|
| 261 |
+
1. Explicitly passed kwargs
|
| 262 |
+
2. Specific parameters (stop_sequences, grammar, etc.)
|
| 263 |
+
3. Default values in self.kwargs
|
| 264 |
+
"""
|
| 265 |
+
# Clean and standardize the message list
|
| 266 |
+
messages = get_clean_message_list(
|
| 267 |
+
messages,
|
| 268 |
+
role_conversions=custom_role_conversions or tool_role_conversions,
|
| 269 |
+
convert_images_to_image_urls=convert_images_to_image_urls,
|
| 270 |
+
flatten_messages_as_text=flatten_messages_as_text,
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
# Use self.kwargs as the base configuration
|
| 274 |
+
completion_kwargs = {
|
| 275 |
+
**self.kwargs,
|
| 276 |
+
"messages": messages,
|
| 277 |
+
}
|
| 278 |
+
|
| 279 |
+
# Handle specific parameters
|
| 280 |
+
if stop_sequences is not None:
|
| 281 |
+
completion_kwargs["stop"] = stop_sequences
|
| 282 |
+
if grammar is not None:
|
| 283 |
+
completion_kwargs["grammar"] = grammar
|
| 284 |
+
|
| 285 |
+
# Handle tools parameter
|
| 286 |
+
if tools_to_call_from:
|
| 287 |
+
completion_kwargs.update(
|
| 288 |
+
{
|
| 289 |
+
"tools": [get_tool_json_schema(tool) for tool in tools_to_call_from],
|
| 290 |
+
"tool_choice": "required",
|
| 291 |
+
}
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
# Finally, use the passed-in kwargs to override all settings
|
| 295 |
+
completion_kwargs.update(kwargs)
|
| 296 |
+
|
| 297 |
+
return completion_kwargs
|
| 298 |
+
|
| 299 |
+
def get_token_counts(self) -> Dict[str, int]:
|
| 300 |
+
return {
|
| 301 |
+
"input_token_count": self.last_input_token_count,
|
| 302 |
+
"output_token_count": self.last_output_token_count,
|
| 303 |
+
}
|
| 304 |
+
|
| 305 |
+
def __call__(
|
| 306 |
+
self,
|
| 307 |
+
messages: List[Dict[str, str]],
|
| 308 |
+
stop_sequences: Optional[List[str]] = None,
|
| 309 |
+
grammar: Optional[str] = None,
|
| 310 |
+
tools_to_call_from: Optional[List[Tool]] = None,
|
| 311 |
+
**kwargs,
|
| 312 |
+
) -> ChatMessage:
|
| 313 |
+
"""Process the input messages and return the model's response.
|
| 314 |
+
|
| 315 |
+
Parameters:
|
| 316 |
+
messages (`List[Dict[str, str]]`):
|
| 317 |
+
A list of message dictionaries to be processed. Each dictionary should have the structure `{"role": "user/system", "content": "message content"}`.
|
| 318 |
+
stop_sequences (`List[str]`, *optional*):
|
| 319 |
+
A list of strings that will stop the generation if encountered in the model's output.
|
| 320 |
+
grammar (`str`, *optional*):
|
| 321 |
+
The grammar or formatting structure to use in the model's response.
|
| 322 |
+
tools_to_call_from (`List[Tool]`, *optional*):
|
| 323 |
+
A list of tools that the model can use to generate responses.
|
| 324 |
+
**kwargs:
|
| 325 |
+
Additional keyword arguments to be passed to the underlying model.
|
| 326 |
+
|
| 327 |
+
Returns:
|
| 328 |
+
`ChatMessage`: A chat message object containing the model's response.
|
| 329 |
+
"""
|
| 330 |
+
pass # To be implemented in child classes!
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
class HfApiModel(Model):
|
| 334 |
+
"""A class to interact with Hugging Face's Inference API for language model interaction.
|
| 335 |
+
|
| 336 |
+
This model allows you to communicate with Hugging Face's models using the Inference API. It can be used in both serverless mode or with a dedicated endpoint, supporting features like stop sequences and grammar customization.
|
| 337 |
+
|
| 338 |
+
Parameters:
|
| 339 |
+
model_id (`str`, *optional*, defaults to `"Qwen/Qwen2.5-Coder-32B-Instruct"`):
|
| 340 |
+
The Hugging Face model ID to be used for inference. This can be a path or model identifier from the Hugging Face model hub.
|
| 341 |
+
provider (`str`, *optional*):
|
| 342 |
+
Name of the provider to use for inference. Can be `"replicate"`, `"together"`, `"fal-ai"`, `"sambanova"` or `"hf-inference"`.
|
| 343 |
+
defaults to hf-inference (HF Inference API).
|
| 344 |
+
token (`str`, *optional*):
|
| 345 |
+
Token used by the Hugging Face API for authentication. This token need to be authorized 'Make calls to the serverless Inference API'.
|
| 346 |
+
If the model is gated (like Llama-3 models), the token also needs 'Read access to contents of all public gated repos you can access'.
|
| 347 |
+
If not provided, the class will try to use environment variable 'HF_TOKEN', else use the token stored in the Hugging Face CLI configuration.
|
| 348 |
+
timeout (`int`, *optional*, defaults to 120):
|
| 349 |
+
Timeout for the API request, in seconds.
|
| 350 |
+
custom_role_conversions (`dict[str, str]`, *optional*):
|
| 351 |
+
Custom role conversion mapping to convert message roles in others.
|
| 352 |
+
Useful for specific models that do not support specific message roles like "system".
|
| 353 |
+
**kwargs:
|
| 354 |
+
Additional keyword arguments to pass to the Hugging Face API.
|
| 355 |
+
|
| 356 |
+
Raises:
|
| 357 |
+
ValueError:
|
| 358 |
+
If the model name is not provided.
|
| 359 |
+
|
| 360 |
+
Example:
|
| 361 |
+
```python
|
| 362 |
+
>>> engine = HfApiModel(
|
| 363 |
+
... model_id="Qwen/Qwen2.5-Coder-32B-Instruct",
|
| 364 |
+
... token="your_hf_token_here",
|
| 365 |
+
... max_tokens=5000,
|
| 366 |
+
... )
|
| 367 |
+
>>> messages = [{"role": "user", "content": "Explain quantum mechanics in simple terms."}]
|
| 368 |
+
>>> response = engine(messages, stop_sequences=["END"])
|
| 369 |
+
>>> print(response)
|
| 370 |
+
"Quantum mechanics is the branch of physics that studies..."
|
| 371 |
+
```
|
| 372 |
+
"""
|
| 373 |
+
|
| 374 |
+
def __init__(
|
| 375 |
+
self,
|
| 376 |
+
model_id: str = "Qwen/Qwen2.5-Coder-32B-Instruct",
|
| 377 |
+
provider: Optional[str] = None,
|
| 378 |
+
token: Optional[str] = None,
|
| 379 |
+
timeout: Optional[int] = 120,
|
| 380 |
+
custom_role_conversions: Optional[Dict[str, str]] = None,
|
| 381 |
+
**kwargs,
|
| 382 |
+
):
|
| 383 |
+
super().__init__(**kwargs)
|
| 384 |
+
self.model_id = model_id
|
| 385 |
+
self.provider = provider
|
| 386 |
+
if token is None:
|
| 387 |
+
token = os.getenv("HF_TOKEN")
|
| 388 |
+
self.client = InferenceClient(self.model_id, provider=provider, token=token, timeout=timeout)
|
| 389 |
+
self.custom_role_conversions = custom_role_conversions
|
| 390 |
+
|
| 391 |
+
def __call__(
|
| 392 |
+
self,
|
| 393 |
+
messages: List[Dict[str, str]],
|
| 394 |
+
stop_sequences: Optional[List[str]] = None,
|
| 395 |
+
grammar: Optional[str] = None,
|
| 396 |
+
tools_to_call_from: Optional[List[Tool]] = None,
|
| 397 |
+
**kwargs,
|
| 398 |
+
) -> ChatMessage:
|
| 399 |
+
completion_kwargs = self._prepare_completion_kwargs(
|
| 400 |
+
messages=messages,
|
| 401 |
+
stop_sequences=stop_sequences,
|
| 402 |
+
grammar=grammar,
|
| 403 |
+
tools_to_call_from=tools_to_call_from,
|
| 404 |
+
convert_images_to_image_urls=True,
|
| 405 |
+
custom_role_conversions=self.custom_role_conversions,
|
| 406 |
+
**kwargs,
|
| 407 |
+
)
|
| 408 |
+
response = self.client.chat_completion(**completion_kwargs)
|
| 409 |
+
|
| 410 |
+
self.last_input_token_count = response.usage.prompt_tokens
|
| 411 |
+
self.last_output_token_count = response.usage.completion_tokens
|
| 412 |
+
message = ChatMessage.from_hf_api(response.choices[0].message, raw=response)
|
| 413 |
+
if tools_to_call_from is not None:
|
| 414 |
+
return parse_tool_args_if_needed(message)
|
| 415 |
+
return message
|
| 416 |
+
|
| 417 |
+
|
| 418 |
+
class TransformersModel(Model):
|
| 419 |
+
"""A class that uses Hugging Face's Transformers library for language model interaction.
|
| 420 |
+
|
| 421 |
+
This model allows you to load and use Hugging Face's models locally using the Transformers library. It supports features like stop sequences and grammar customization.
|
| 422 |
+
|
| 423 |
+
> [!TIP]
|
| 424 |
+
> You must have `transformers` and `torch` installed on your machine. Please run `pip install smolagents[transformers]` if it's not the case.
|
| 425 |
+
|
| 426 |
+
Parameters:
|
| 427 |
+
model_id (`str`, *optional*, defaults to `"Qwen/Qwen2.5-Coder-32B-Instruct"`):
|
| 428 |
+
The Hugging Face model ID to be used for inference. This can be a path or model identifier from the Hugging Face model hub.
|
| 429 |
+
device_map (`str`, *optional*):
|
| 430 |
+
The device_map to initialize your model with.
|
| 431 |
+
torch_dtype (`str`, *optional*):
|
| 432 |
+
The torch_dtype to initialize your model with.
|
| 433 |
+
trust_remote_code (bool, default `False`):
|
| 434 |
+
Some models on the Hub require running remote code: for this model, you would have to set this flag to True.
|
| 435 |
+
kwargs (dict, *optional*):
|
| 436 |
+
Any additional keyword arguments that you want to use in model.generate(), for instance `max_new_tokens` or `device`.
|
| 437 |
+
**kwargs:
|
| 438 |
+
Additional keyword arguments to pass to `model.generate()`, for instance `max_new_tokens` or `device`.
|
| 439 |
+
Raises:
|
| 440 |
+
ValueError:
|
| 441 |
+
If the model name is not provided.
|
| 442 |
+
|
| 443 |
+
Example:
|
| 444 |
+
```python
|
| 445 |
+
>>> engine = TransformersModel(
|
| 446 |
+
... model_id="Qwen/Qwen2.5-Coder-32B-Instruct",
|
| 447 |
+
... device="cuda",
|
| 448 |
+
... max_new_tokens=5000,
|
| 449 |
+
... )
|
| 450 |
+
>>> messages = [{"role": "user", "content": "Explain quantum mechanics in simple terms."}]
|
| 451 |
+
>>> response = engine(messages, stop_sequences=["END"])
|
| 452 |
+
>>> print(response)
|
| 453 |
+
"Quantum mechanics is the branch of physics that studies..."
|
| 454 |
+
```
|
| 455 |
+
"""
|
| 456 |
+
|
| 457 |
+
def __init__(
|
| 458 |
+
self,
|
| 459 |
+
model_id: Optional[str] = None,
|
| 460 |
+
device_map: Optional[str] = None,
|
| 461 |
+
torch_dtype: Optional[str] = None,
|
| 462 |
+
trust_remote_code: bool = False,
|
| 463 |
+
**kwargs,
|
| 464 |
+
):
|
| 465 |
+
super().__init__(**kwargs)
|
| 466 |
+
if not is_torch_available() or not _is_package_available("transformers"):
|
| 467 |
+
raise ModuleNotFoundError(
|
| 468 |
+
"Please install 'transformers' extra to use 'TransformersModel': `pip install 'smolagents[transformers]'`"
|
| 469 |
+
)
|
| 470 |
+
import torch
|
| 471 |
+
from transformers import AutoModelForCausalLM, AutoModelForImageTextToText, AutoProcessor, AutoTokenizer
|
| 472 |
+
|
| 473 |
+
default_model_id = "HuggingFaceTB/SmolLM2-1.7B-Instruct"
|
| 474 |
+
if model_id is None:
|
| 475 |
+
model_id = default_model_id
|
| 476 |
+
logger.warning(f"`model_id`not provided, using this default tokenizer for token counts: '{model_id}'")
|
| 477 |
+
self.model_id = model_id
|
| 478 |
+
self.kwargs = kwargs
|
| 479 |
+
if device_map is None:
|
| 480 |
+
device_map = "cuda" if torch.cuda.is_available() else "cpu"
|
| 481 |
+
logger.info(f"Using device: {device_map}")
|
| 482 |
+
self._is_vlm = False
|
| 483 |
+
try:
|
| 484 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 485 |
+
model_id,
|
| 486 |
+
device_map=device_map,
|
| 487 |
+
torch_dtype=torch_dtype,
|
| 488 |
+
trust_remote_code=trust_remote_code,
|
| 489 |
+
)
|
| 490 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 491 |
+
except ValueError as e:
|
| 492 |
+
if "Unrecognized configuration class" in str(e):
|
| 493 |
+
self.model = AutoModelForImageTextToText.from_pretrained(model_id, device_map=device_map)
|
| 494 |
+
self.processor = AutoProcessor.from_pretrained(model_id)
|
| 495 |
+
self._is_vlm = True
|
| 496 |
+
else:
|
| 497 |
+
raise e
|
| 498 |
+
except Exception as e:
|
| 499 |
+
logger.warning(
|
| 500 |
+
f"Failed to load tokenizer and model for {model_id=}: {e}. Loading default tokenizer and model instead from {default_model_id=}."
|
| 501 |
+
)
|
| 502 |
+
self.model_id = default_model_id
|
| 503 |
+
self.tokenizer = AutoTokenizer.from_pretrained(default_model_id)
|
| 504 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_id, device_map=device_map, torch_dtype=torch_dtype)
|
| 505 |
+
|
| 506 |
+
def make_stopping_criteria(self, stop_sequences: List[str], tokenizer) -> "StoppingCriteriaList":
|
| 507 |
+
from transformers import StoppingCriteria, StoppingCriteriaList
|
| 508 |
+
|
| 509 |
+
class StopOnStrings(StoppingCriteria):
|
| 510 |
+
def __init__(self, stop_strings: List[str], tokenizer):
|
| 511 |
+
self.stop_strings = stop_strings
|
| 512 |
+
self.tokenizer = tokenizer
|
| 513 |
+
self.stream = ""
|
| 514 |
+
|
| 515 |
+
def reset(self):
|
| 516 |
+
self.stream = ""
|
| 517 |
+
|
| 518 |
+
def __call__(self, input_ids, scores, **kwargs):
|
| 519 |
+
generated = self.tokenizer.decode(input_ids[0][-1], skip_special_tokens=True)
|
| 520 |
+
self.stream += generated
|
| 521 |
+
if any([self.stream.endswith(stop_string) for stop_string in self.stop_strings]):
|
| 522 |
+
return True
|
| 523 |
+
return False
|
| 524 |
+
|
| 525 |
+
return StoppingCriteriaList([StopOnStrings(stop_sequences, tokenizer)])
|
| 526 |
+
|
| 527 |
+
def __call__(
|
| 528 |
+
self,
|
| 529 |
+
messages: List[Dict[str, str]],
|
| 530 |
+
stop_sequences: Optional[List[str]] = None,
|
| 531 |
+
grammar: Optional[str] = None,
|
| 532 |
+
tools_to_call_from: Optional[List[Tool]] = None,
|
| 533 |
+
images: Optional[List[Image.Image]] = None,
|
| 534 |
+
**kwargs,
|
| 535 |
+
) -> ChatMessage:
|
| 536 |
+
completion_kwargs = self._prepare_completion_kwargs(
|
| 537 |
+
messages=messages,
|
| 538 |
+
stop_sequences=stop_sequences,
|
| 539 |
+
grammar=grammar,
|
| 540 |
+
flatten_messages_as_text=(not self._is_vlm),
|
| 541 |
+
**kwargs,
|
| 542 |
+
)
|
| 543 |
+
|
| 544 |
+
messages = completion_kwargs.pop("messages")
|
| 545 |
+
stop_sequences = completion_kwargs.pop("stop", None)
|
| 546 |
+
|
| 547 |
+
max_new_tokens = (
|
| 548 |
+
kwargs.get("max_new_tokens")
|
| 549 |
+
or kwargs.get("max_tokens")
|
| 550 |
+
or self.kwargs.get("max_new_tokens")
|
| 551 |
+
or self.kwargs.get("max_tokens")
|
| 552 |
+
)
|
| 553 |
+
|
| 554 |
+
if max_new_tokens:
|
| 555 |
+
completion_kwargs["max_new_tokens"] = max_new_tokens
|
| 556 |
+
|
| 557 |
+
if hasattr(self, "processor"):
|
| 558 |
+
images = [Image.open(image) for image in images] if images else None
|
| 559 |
+
prompt_tensor = self.processor.apply_chat_template(
|
| 560 |
+
messages,
|
| 561 |
+
tools=[get_tool_json_schema(tool) for tool in tools_to_call_from] if tools_to_call_from else None,
|
| 562 |
+
return_tensors="pt",
|
| 563 |
+
tokenize=True,
|
| 564 |
+
return_dict=True,
|
| 565 |
+
images=images,
|
| 566 |
+
add_generation_prompt=True if tools_to_call_from else False,
|
| 567 |
+
)
|
| 568 |
+
else:
|
| 569 |
+
prompt_tensor = self.tokenizer.apply_chat_template(
|
| 570 |
+
messages,
|
| 571 |
+
tools=[get_tool_json_schema(tool) for tool in tools_to_call_from] if tools_to_call_from else None,
|
| 572 |
+
return_tensors="pt",
|
| 573 |
+
return_dict=True,
|
| 574 |
+
add_generation_prompt=True if tools_to_call_from else False,
|
| 575 |
+
)
|
| 576 |
+
|
| 577 |
+
prompt_tensor = prompt_tensor.to(self.model.device)
|
| 578 |
+
count_prompt_tokens = prompt_tensor["input_ids"].shape[1]
|
| 579 |
+
|
| 580 |
+
if stop_sequences:
|
| 581 |
+
stopping_criteria = self.make_stopping_criteria(
|
| 582 |
+
stop_sequences, tokenizer=self.processor if hasattr(self, "processor") else self.tokenizer
|
| 583 |
+
)
|
| 584 |
+
else:
|
| 585 |
+
stopping_criteria = None
|
| 586 |
+
|
| 587 |
+
out = self.model.generate(
|
| 588 |
+
**prompt_tensor,
|
| 589 |
+
stopping_criteria=stopping_criteria,
|
| 590 |
+
**completion_kwargs,
|
| 591 |
+
)
|
| 592 |
+
generated_tokens = out[0, count_prompt_tokens:]
|
| 593 |
+
if hasattr(self, "processor"):
|
| 594 |
+
output = self.processor.decode(generated_tokens, skip_special_tokens=True)
|
| 595 |
+
else:
|
| 596 |
+
output = self.tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
| 597 |
+
self.last_input_token_count = count_prompt_tokens
|
| 598 |
+
self.last_output_token_count = len(generated_tokens)
|
| 599 |
+
|
| 600 |
+
if stop_sequences is not None:
|
| 601 |
+
output = remove_stop_sequences(output, stop_sequences)
|
| 602 |
+
|
| 603 |
+
if tools_to_call_from is None:
|
| 604 |
+
return ChatMessage(
|
| 605 |
+
role="assistant",
|
| 606 |
+
content=output,
|
| 607 |
+
raw={"out": out, "completion_kwargs": completion_kwargs},
|
| 608 |
+
)
|
| 609 |
+
else:
|
| 610 |
+
if "Action:" in output:
|
| 611 |
+
output = output.split("Action:", 1)[1].strip()
|
| 612 |
+
try:
|
| 613 |
+
start_index = output.index("{")
|
| 614 |
+
end_index = output.rindex("}")
|
| 615 |
+
output = output[start_index : end_index + 1]
|
| 616 |
+
except Exception as e:
|
| 617 |
+
raise Exception("No json blob found in output!") from e
|
| 618 |
+
|
| 619 |
+
try:
|
| 620 |
+
parsed_output = json.loads(output)
|
| 621 |
+
except json.JSONDecodeError as e:
|
| 622 |
+
raise ValueError(f"Tool call '{output}' has an invalid JSON structure: {e}")
|
| 623 |
+
tool_name = parsed_output.get("name")
|
| 624 |
+
tool_arguments = parsed_output.get("arguments")
|
| 625 |
+
return ChatMessage(
|
| 626 |
+
role="assistant",
|
| 627 |
+
content="",
|
| 628 |
+
tool_calls=[
|
| 629 |
+
ChatMessageToolCall(
|
| 630 |
+
id="".join(random.choices("0123456789", k=5)),
|
| 631 |
+
type="function",
|
| 632 |
+
function=ChatMessageToolCallDefinition(name=tool_name, arguments=tool_arguments),
|
| 633 |
+
)
|
| 634 |
+
],
|
| 635 |
+
raw={"out": out, "completion_kwargs": completion_kwargs},
|
| 636 |
+
)
|
| 637 |
+
|
| 638 |
+
|
| 639 |
+
class LiteLLMModel(Model):
|
| 640 |
+
"""This model connects to [LiteLLM](https://www.litellm.ai/) as a gateway to hundreds of LLMs.
|
| 641 |
+
|
| 642 |
+
Parameters:
|
| 643 |
+
model_id (`str`):
|
| 644 |
+
The model identifier to use on the server (e.g. "gpt-3.5-turbo").
|
| 645 |
+
api_base (`str`, *optional*):
|
| 646 |
+
The base URL of the OpenAI-compatible API server.
|
| 647 |
+
api_key (`str`, *optional*):
|
| 648 |
+
The API key to use for authentication.
|
| 649 |
+
custom_role_conversions (`dict[str, str]`, *optional*):
|
| 650 |
+
Custom role conversion mapping to convert message roles in others.
|
| 651 |
+
Useful for specific models that do not support specific message roles like "system".
|
| 652 |
+
**kwargs:
|
| 653 |
+
Additional keyword arguments to pass to the OpenAI API.
|
| 654 |
+
"""
|
| 655 |
+
|
| 656 |
+
def __init__(
|
| 657 |
+
self,
|
| 658 |
+
model_id: str = "anthropic/claude-3-5-sonnet-20240620",
|
| 659 |
+
api_base=None,
|
| 660 |
+
api_key=None,
|
| 661 |
+
custom_role_conversions: Optional[Dict[str, str]] = None,
|
| 662 |
+
**kwargs,
|
| 663 |
+
):
|
| 664 |
+
try:
|
| 665 |
+
import litellm
|
| 666 |
+
except ModuleNotFoundError:
|
| 667 |
+
raise ModuleNotFoundError(
|
| 668 |
+
"Please install 'litellm' extra to use LiteLLMModel: `pip install 'smolagents[litellm]'`"
|
| 669 |
+
)
|
| 670 |
+
|
| 671 |
+
super().__init__(**kwargs)
|
| 672 |
+
self.model_id = model_id
|
| 673 |
+
# IMPORTANT - Set this to TRUE to add the function to the prompt for Non OpenAI LLMs
|
| 674 |
+
litellm.add_function_to_prompt = True
|
| 675 |
+
self.api_base = api_base
|
| 676 |
+
self.api_key = api_key
|
| 677 |
+
self.custom_role_conversions = custom_role_conversions
|
| 678 |
+
|
| 679 |
+
def __call__(
|
| 680 |
+
self,
|
| 681 |
+
messages: List[Dict[str, str]],
|
| 682 |
+
stop_sequences: Optional[List[str]] = None,
|
| 683 |
+
grammar: Optional[str] = None,
|
| 684 |
+
tools_to_call_from: Optional[List[Tool]] = None,
|
| 685 |
+
**kwargs,
|
| 686 |
+
) -> ChatMessage:
|
| 687 |
+
import litellm
|
| 688 |
+
|
| 689 |
+
completion_kwargs = self._prepare_completion_kwargs(
|
| 690 |
+
messages=messages,
|
| 691 |
+
stop_sequences=stop_sequences,
|
| 692 |
+
grammar=grammar,
|
| 693 |
+
tools_to_call_from=tools_to_call_from,
|
| 694 |
+
model=self.model_id,
|
| 695 |
+
api_base=self.api_base,
|
| 696 |
+
api_key=self.api_key,
|
| 697 |
+
convert_images_to_image_urls=True,
|
| 698 |
+
flatten_messages_as_text=self.model_id.startswith("ollama"),
|
| 699 |
+
custom_role_conversions=self.custom_role_conversions,
|
| 700 |
+
**kwargs,
|
| 701 |
+
)
|
| 702 |
+
|
| 703 |
+
response = litellm.completion(**completion_kwargs)
|
| 704 |
+
|
| 705 |
+
self.last_input_token_count = response.usage.prompt_tokens
|
| 706 |
+
self.last_output_token_count = response.usage.completion_tokens
|
| 707 |
+
message = ChatMessage.from_dict(
|
| 708 |
+
response.choices[0].message.model_dump(include={"role", "content", "tool_calls"})
|
| 709 |
+
)
|
| 710 |
+
message.raw = response
|
| 711 |
+
|
| 712 |
+
if tools_to_call_from is not None:
|
| 713 |
+
return parse_tool_args_if_needed(message)
|
| 714 |
+
return message
|
| 715 |
+
|
| 716 |
+
|
| 717 |
+
class OpenAIServerModel(Model):
|
| 718 |
+
"""This model connects to an OpenAI-compatible API server.
|
| 719 |
+
|
| 720 |
+
Parameters:
|
| 721 |
+
model_id (`str`):
|
| 722 |
+
The model identifier to use on the server (e.g. "gpt-3.5-turbo").
|
| 723 |
+
api_base (`str`, *optional*):
|
| 724 |
+
The base URL of the OpenAI-compatible API server.
|
| 725 |
+
api_key (`str`, *optional*):
|
| 726 |
+
The API key to use for authentication.
|
| 727 |
+
organization (`str`, *optional*):
|
| 728 |
+
The organization to use for the API request.
|
| 729 |
+
project (`str`, *optional*):
|
| 730 |
+
The project to use for the API request.
|
| 731 |
+
custom_role_conversions (`dict[str, str]`, *optional*):
|
| 732 |
+
Custom role conversion mapping to convert message roles in others.
|
| 733 |
+
Useful for specific models that do not support specific message roles like "system".
|
| 734 |
+
**kwargs:
|
| 735 |
+
Additional keyword arguments to pass to the OpenAI API.
|
| 736 |
+
"""
|
| 737 |
+
|
| 738 |
+
def __init__(
|
| 739 |
+
self,
|
| 740 |
+
model_id: str,
|
| 741 |
+
api_base: Optional[str] = None,
|
| 742 |
+
api_key: Optional[str] = None,
|
| 743 |
+
organization: Optional[str] | None = None,
|
| 744 |
+
project: Optional[str] | None = None,
|
| 745 |
+
custom_role_conversions: Optional[Dict[str, str]] = None,
|
| 746 |
+
**kwargs,
|
| 747 |
+
):
|
| 748 |
+
try:
|
| 749 |
+
import openai
|
| 750 |
+
except ModuleNotFoundError:
|
| 751 |
+
raise ModuleNotFoundError(
|
| 752 |
+
"Please install 'openai' extra to use OpenAIServerModel: `pip install 'smolagents[openai]'`"
|
| 753 |
+
) from None
|
| 754 |
+
|
| 755 |
+
super().__init__(**kwargs)
|
| 756 |
+
self.model_id = model_id
|
| 757 |
+
self.client = openai.OpenAI(
|
| 758 |
+
base_url=api_base,
|
| 759 |
+
api_key=api_key,
|
| 760 |
+
organization=organization,
|
| 761 |
+
project=project,
|
| 762 |
+
)
|
| 763 |
+
self.custom_role_conversions = custom_role_conversions
|
| 764 |
+
|
| 765 |
+
def __call__(
|
| 766 |
+
self,
|
| 767 |
+
messages: List[Dict[str, str]],
|
| 768 |
+
stop_sequences: Optional[List[str]] = None,
|
| 769 |
+
grammar: Optional[str] = None,
|
| 770 |
+
tools_to_call_from: Optional[List[Tool]] = None,
|
| 771 |
+
**kwargs,
|
| 772 |
+
) -> ChatMessage:
|
| 773 |
+
completion_kwargs = self._prepare_completion_kwargs(
|
| 774 |
+
messages=messages,
|
| 775 |
+
stop_sequences=stop_sequences,
|
| 776 |
+
grammar=grammar,
|
| 777 |
+
tools_to_call_from=tools_to_call_from,
|
| 778 |
+
model=self.model_id,
|
| 779 |
+
custom_role_conversions=self.custom_role_conversions,
|
| 780 |
+
convert_images_to_image_urls=True,
|
| 781 |
+
**kwargs,
|
| 782 |
+
)
|
| 783 |
+
response = self.client.chat.completions.create(**completion_kwargs)
|
| 784 |
+
self.last_input_token_count = response.usage.prompt_tokens
|
| 785 |
+
self.last_output_token_count = response.usage.completion_tokens
|
| 786 |
+
|
| 787 |
+
message = ChatMessage.from_dict(
|
| 788 |
+
response.choices[0].message.model_dump(include={"role", "content", "tool_calls"})
|
| 789 |
+
)
|
| 790 |
+
message.raw = response
|
| 791 |
+
if tools_to_call_from is not None:
|
| 792 |
+
return parse_tool_args_if_needed(message)
|
| 793 |
+
return message
|
| 794 |
+
|
| 795 |
+
|
| 796 |
+
class AzureOpenAIServerModel(OpenAIServerModel):
|
| 797 |
+
"""This model connects to an Azure OpenAI deployment.
|
| 798 |
+
|
| 799 |
+
Parameters:
|
| 800 |
+
model_id (`str`):
|
| 801 |
+
The model deployment name to use when connecting (e.g. "gpt-4o-mini").
|
| 802 |
+
azure_endpoint (`str`, *optional*):
|
| 803 |
+
The Azure endpoint, including the resource, e.g. `https://example-resource.azure.openai.com/`. If not provided, it will be inferred from the `AZURE_OPENAI_ENDPOINT` environment variable.
|
| 804 |
+
api_key (`str`, *optional*):
|
| 805 |
+
The API key to use for authentication. If not provided, it will be inferred from the `AZURE_OPENAI_API_KEY` environment variable.
|
| 806 |
+
api_version (`str`, *optional*):
|
| 807 |
+
The API version to use. If not provided, it will be inferred from the `OPENAI_API_VERSION` environment variable.
|
| 808 |
+
custom_role_conversions (`dict[str, str]`, *optional*):
|
| 809 |
+
Custom role conversion mapping to convert message roles in others.
|
| 810 |
+
Useful for specific models that do not support specific message roles like "system".
|
| 811 |
+
**kwargs:
|
| 812 |
+
Additional keyword arguments to pass to the Azure OpenAI API.
|
| 813 |
+
"""
|
| 814 |
+
|
| 815 |
+
def __init__(
|
| 816 |
+
self,
|
| 817 |
+
model_id: str,
|
| 818 |
+
azure_endpoint: Optional[str] = None,
|
| 819 |
+
api_key: Optional[str] = None,
|
| 820 |
+
api_version: Optional[str] = None,
|
| 821 |
+
custom_role_conversions: Optional[Dict[str, str]] = None,
|
| 822 |
+
**kwargs,
|
| 823 |
+
):
|
| 824 |
+
# read the api key manually, to avoid super().__init__() trying to use the wrong api_key (OPENAI_API_KEY)
|
| 825 |
+
if api_key is None:
|
| 826 |
+
api_key = os.environ.get("AZURE_OPENAI_API_KEY")
|
| 827 |
+
|
| 828 |
+
super().__init__(model_id=model_id, api_key=api_key, custom_role_conversions=custom_role_conversions, **kwargs)
|
| 829 |
+
# if we've reached this point, it means the openai package is available (checked in baseclass) so go ahead and import it
|
| 830 |
+
import openai
|
| 831 |
+
|
| 832 |
+
self.client = openai.AzureOpenAI(api_key=api_key, api_version=api_version, azure_endpoint=azure_endpoint)
|
| 833 |
+
|
| 834 |
+
|
| 835 |
+
__all__ = [
|
| 836 |
+
"MessageRole",
|
| 837 |
+
"tool_role_conversions",
|
| 838 |
+
"get_clean_message_list",
|
| 839 |
+
"Model",
|
| 840 |
+
"TransformersModel",
|
| 841 |
+
"HfApiModel",
|
| 842 |
+
"LiteLLMModel",
|
| 843 |
+
"OpenAIServerModel",
|
| 844 |
+
"AzureOpenAIServerModel",
|
| 845 |
+
"ChatMessage",
|
| 846 |
+
]
|