Spaces:
Build error
Build error
| from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader | |
| from langchain_core.prompts import PromptTemplate | |
| from langchain_community.embeddings import HuggingFaceEmbeddings | |
| from langchain_community.vectorstores import FAISS | |
| from langchain.chains import RetrievalQA | |
| import chainlit as cl | |
| from langchain_community.chat_models import ChatOpenAI | |
| from langchain_community.embeddings import OpenAIEmbeddings | |
| import yaml | |
| import logging | |
| from dotenv import load_dotenv | |
| from modules.chat.llm_tutor import LLMTutor | |
| from modules.config.constants import * | |
| from modules.chat.helpers import get_sources | |
| from modules.chat_processor.chat_processor import ChatProcessor | |
| global logger | |
| # Initialize logger | |
| logger = logging.getLogger(__name__) | |
| logger.setLevel(logging.INFO) | |
| formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s") | |
| # Console Handler | |
| console_handler = logging.StreamHandler() | |
| console_handler.setLevel(logging.INFO) | |
| console_handler.setFormatter(formatter) | |
| logger.addHandler(console_handler) | |
| # Adding option to select the chat profile | |
| async def chat_profile(): | |
| return [ | |
| # cl.ChatProfile( | |
| # name="Mistral", | |
| # markdown_description="Use the local LLM: **Mistral**.", | |
| # ), | |
| cl.ChatProfile( | |
| name="gpt-3.5-turbo-1106", | |
| markdown_description="Use OpenAI API for **gpt-3.5-turbo-1106**.", | |
| ), | |
| cl.ChatProfile( | |
| name="gpt-4", | |
| markdown_description="Use OpenAI API for **gpt-4**.", | |
| ), | |
| cl.ChatProfile( | |
| name="Llama", | |
| markdown_description="Use the local LLM: **Tiny Llama**.", | |
| ), | |
| ] | |
| def rename(orig_author: str): | |
| rename_dict = {"Chatbot": "AI Tutor"} | |
| return rename_dict.get(orig_author, orig_author) | |
| # chainlit code | |
| async def start(): | |
| with open("modules/config/config.yml", "r") as f: | |
| config = yaml.safe_load(f) | |
| # Ensure log directory exists | |
| log_directory = config["log_dir"] | |
| if not os.path.exists(log_directory): | |
| os.makedirs(log_directory) | |
| # File Handler | |
| log_file_path = ( | |
| f"{log_directory}/tutor.log" # Change this to your desired log file path | |
| ) | |
| file_handler = logging.FileHandler(log_file_path, mode="w") | |
| file_handler.setLevel(logging.INFO) | |
| file_handler.setFormatter(formatter) | |
| logger.addHandler(file_handler) | |
| logger.info("Config file loaded") | |
| logger.info(f"Config: {config}") | |
| logger.info("Creating llm_tutor instance") | |
| chat_profile = cl.user_session.get("chat_profile") | |
| if chat_profile is not None: | |
| if chat_profile.lower() in ["gpt-3.5-turbo-1106", "gpt-4"]: | |
| config["llm_params"]["llm_loader"] = "openai" | |
| config["llm_params"]["openai_params"]["model"] = chat_profile.lower() | |
| elif chat_profile.lower() == "llama": | |
| config["llm_params"]["llm_loader"] = "local_llm" | |
| config["llm_params"]["local_llm_params"]["model"] = LLAMA_PATH | |
| config["llm_params"]["local_llm_params"]["model_type"] = "llama" | |
| elif chat_profile.lower() == "mistral": | |
| config["llm_params"]["llm_loader"] = "local_llm" | |
| config["llm_params"]["local_llm_params"]["model"] = MISTRAL_PATH | |
| config["llm_params"]["local_llm_params"]["model_type"] = "mistral" | |
| else: | |
| pass | |
| llm_tutor = LLMTutor(config, logger=logger) | |
| chain = llm_tutor.qa_bot() | |
| msg = cl.Message(content=f"Starting the bot {chat_profile}...") | |
| await msg.send() | |
| msg.content = opening_message | |
| await msg.update() | |
| tags = [chat_profile, config["vectorstore"]["db_option"]] | |
| chat_processor = ChatProcessor(config["chat_logging"]["platform"], tags=tags) | |
| cl.user_session.set("chain", chain) | |
| cl.user_session.set("counter", 0) | |
| cl.user_session.set("chat_processor", chat_processor) | |
| async def on_chat_end(): | |
| await cl.Message(content="Sorry, I have to go now. Goodbye!").send() | |
| async def main(message): | |
| global logger | |
| user = cl.user_session.get("user") | |
| chain = cl.user_session.get("chain") | |
| counter = cl.user_session.get("counter") | |
| counter += 1 | |
| cl.user_session.set("counter", counter) | |
| # if counter >= 3: # Ensure the counter condition is checked | |
| # await cl.Message(content="Your credits are up!").send() | |
| # await on_chat_end() # Call the on_chat_end function to handle the end of the chat | |
| # return # Exit the function to stop further processing | |
| # else: | |
| cb = cl.AsyncLangchainCallbackHandler() # TODO: fix streaming here | |
| cb.answer_reached = True | |
| processor = cl.user_session.get("chat_processor") | |
| res = await processor.rag(message.content, chain, cb) | |
| try: | |
| answer = res["answer"] | |
| except: | |
| answer = res["result"] | |
| answer_with_sources, source_elements, sources_dict = get_sources(res, answer) | |
| processor._process(message.content, answer, sources_dict) | |
| await cl.Message(content=answer_with_sources, elements=source_elements).send() | |