Spaces:
Build error
Build error
| import chainlit.data as cl_data | |
| import asyncio | |
| from typing import Any, Dict, no_type_check | |
| import chainlit as cl | |
| from modules.chat.llm_tutor import LLMTutor | |
| from modules.chat.helpers import ( | |
| get_sources, | |
| get_history_setup_llm, | |
| ) | |
| import copy | |
| from langchain_community.callbacks import get_openai_callback | |
| from config.config_manager import config_manager | |
| USER_TIMEOUT = 60_000 | |
| SYSTEM = "System" | |
| LLM = "AI Tutor" | |
| AGENT = "Agent" | |
| YOU = "User" | |
| ERROR = "Error" | |
| config = config_manager.get_config().dict() | |
| class Chatbot: | |
| def __init__(self, config): | |
| """ | |
| Initialize the Chatbot class. | |
| """ | |
| self.config = config | |
| async def setup_llm(self): | |
| """ | |
| Set up the LLM with the provided settings. Update the configuration and initialize the LLM tutor. | |
| #TODO: Clean this up. | |
| """ | |
| llm_settings = cl.user_session.get("llm_settings", {}) | |
| ( | |
| chat_profile, | |
| retriever_method, | |
| memory_window, | |
| llm_style, | |
| generate_follow_up, | |
| chunking_mode, | |
| ) = ( | |
| llm_settings.get("chat_model"), | |
| llm_settings.get("retriever_method"), | |
| llm_settings.get("memory_window"), | |
| llm_settings.get("llm_style"), | |
| llm_settings.get("follow_up_questions"), | |
| llm_settings.get("chunking_mode"), | |
| ) | |
| chain = cl.user_session.get("chain") | |
| memory_list = cl.user_session.get( | |
| "memory", | |
| ( | |
| list(chain.store.values())[0].messages | |
| if len(chain.store.values()) > 0 | |
| else [] | |
| ), | |
| ) | |
| conversation_list = get_history_setup_llm(memory_list) | |
| old_config = copy.deepcopy(self.config) | |
| self.config["vectorstore"]["db_option"] = retriever_method | |
| self.config["llm_params"]["memory_window"] = memory_window | |
| self.config["llm_params"]["llm_style"] = llm_style | |
| self.config["llm_params"]["llm_loader"] = chat_profile | |
| self.config["llm_params"]["generate_follow_up"] = generate_follow_up | |
| self.config["splitter_options"]["chunking_mode"] = chunking_mode | |
| self.llm_tutor.update_llm( | |
| old_config, self.config | |
| ) # update only llm attributes that are changed | |
| self.chain = self.llm_tutor.qa_bot( | |
| memory=conversation_list, | |
| ) | |
| cl.user_session.set("chain", self.chain) | |
| cl.user_session.set("llm_tutor", self.llm_tutor) | |
| async def update_llm(self, new_settings: Dict[str, Any]): | |
| """ | |
| Update the LLM settings and reinitialize the LLM with the new settings. | |
| Args: | |
| new_settings (Dict[str, Any]): The new settings to update. | |
| """ | |
| cl.user_session.set("llm_settings", new_settings) | |
| await self.inform_llm_settings() | |
| await self.setup_llm() | |
| async def make_llm_settings_widgets(self, config=None): | |
| """ | |
| Create and send the widgets for LLM settings configuration. | |
| Args: | |
| config: The configuration to use for setting up the widgets. | |
| """ | |
| config = config or self.config | |
| await cl.ChatSettings( | |
| [ | |
| cl.input_widget.Select( | |
| id="chat_model", | |
| label="Model Name (Default GPT-3)", | |
| values=["local_llm", "gpt-3.5-turbo-1106", "gpt-4", "gpt-4o-mini"], | |
| initial_index=[ | |
| "local_llm", | |
| "gpt-3.5-turbo-1106", | |
| "gpt-4", | |
| "gpt-4o-mini", | |
| ].index(config["llm_params"]["llm_loader"]), | |
| ), | |
| cl.input_widget.Select( | |
| id="retriever_method", | |
| label="Retriever (Default FAISS)", | |
| values=["FAISS", "Chroma", "RAGatouille", "RAPTOR"], | |
| initial_index=["FAISS", "Chroma", "RAGatouille", "RAPTOR"].index( | |
| config["vectorstore"]["db_option"] | |
| ), | |
| ), | |
| cl.input_widget.Slider( | |
| id="memory_window", | |
| label="Memory Window (Default 3)", | |
| initial=3, | |
| min=0, | |
| max=10, | |
| step=1, | |
| ), | |
| cl.input_widget.Switch( | |
| id="view_sources", label="View Sources", initial=False | |
| ), | |
| cl.input_widget.Switch( | |
| id="stream_response", | |
| label="Stream response", | |
| initial=config["llm_params"]["stream"], | |
| ), | |
| cl.input_widget.Select( | |
| id="chunking_mode", | |
| label="Chunking mode", | |
| values=["fixed", "semantic"], | |
| initial_index=1, | |
| ), | |
| cl.input_widget.Switch( | |
| id="follow_up_questions", | |
| label="Generate follow up questions", | |
| initial=False, | |
| ), | |
| cl.input_widget.Select( | |
| id="llm_style", | |
| label="Type of Conversation (Default Normal)", | |
| values=["Normal", "ELI5"], | |
| initial_index=0, | |
| ), | |
| ] | |
| ).send() | |
| async def inform_llm_settings(self): | |
| """ | |
| Inform the user about the updated LLM settings and display them as a message. | |
| """ | |
| await cl.Message( | |
| author=SYSTEM, | |
| content="LLM settings have been updated. You can continue with your Query!", | |
| ).send() | |
| async def set_starters(self): | |
| """ | |
| Set starter messages for the chatbot. | |
| """ | |
| return [ | |
| cl.Starter( | |
| label="recording on Transformers?", | |
| message="Where can I find the recording for the lecture on Transformers?", | |
| icon="/public/assets/images/starter_icons/adv-screen-recorder-svgrepo-com.svg", | |
| ), | |
| cl.Starter( | |
| label="where's the slides?", | |
| message="When are the lectures? I can't find the schedule.", | |
| icon="/public/assets/images/starter_icons/alarmy-svgrepo-com.svg", | |
| ), | |
| cl.Starter( | |
| label="Due Date?", | |
| message="When is the final project due?", | |
| icon="/public/assets/images/starter_icons/calendar-samsung-17-svgrepo-com.svg", | |
| ), | |
| cl.Starter( | |
| label="Explain backprop.", | |
| message="I didn't understand the math behind backprop, could you explain it?", | |
| icon="/public/assets/images/starter_icons/acastusphoton-svgrepo-com.svg", | |
| ), | |
| ] | |
| def rename(self, orig_author: str): | |
| """ | |
| Rename the original author to a more user-friendly name. | |
| Args: | |
| orig_author (str): The original author's name. | |
| Returns: | |
| str: The renamed author. | |
| """ | |
| rename_dict = {"Chatbot": LLM} | |
| return rename_dict.get(orig_author, orig_author) | |
| async def start(self): | |
| """ | |
| Start the chatbot, initialize settings widgets, | |
| and display and load previous conversation if chat logging is enabled. | |
| """ | |
| await self.make_llm_settings_widgets(self.config) # Reload the settings widgets | |
| # TODO: remove self.user with cl.user_session.get("user") | |
| self.user = { | |
| "user_id": "guest", | |
| "session_id": cl.context.session.thread_id, | |
| } | |
| memory = cl.user_session.get("memory", []) | |
| self.llm_tutor = LLMTutor(self.config, user=self.user) | |
| self.chain = self.llm_tutor.qa_bot( | |
| memory=memory, | |
| ) | |
| self.question_generator = self.llm_tutor.question_generator | |
| cl.user_session.set("llm_tutor", self.llm_tutor) | |
| cl.user_session.set("chain", self.chain) | |
| async def stream_response(self, response): | |
| """ | |
| Stream the response from the LLM. | |
| Args: | |
| response: The response from the LLM. | |
| """ | |
| msg = cl.Message(content="") | |
| await msg.send() | |
| output = {} | |
| for chunk in response: | |
| if "answer" in chunk: | |
| await msg.stream_token(chunk["answer"]) | |
| for key in chunk: | |
| if key not in output: | |
| output[key] = chunk[key] | |
| else: | |
| output[key] += chunk[key] | |
| return output | |
| async def main(self, message): | |
| """ | |
| Process and Display the Conversation. | |
| Args: | |
| message: The incoming chat message. | |
| """ | |
| chain = cl.user_session.get("chain") | |
| token_count = 0 # initialize token count | |
| if not chain: | |
| await self.start() # start the chatbot if the chain is not present | |
| chain = cl.user_session.get("chain") | |
| # update user info with last message time | |
| llm_settings = cl.user_session.get("llm_settings", {}) | |
| view_sources = llm_settings.get("view_sources", False) | |
| stream = llm_settings.get("stream_response", False) | |
| stream = False # Fix streaming | |
| user_query_dict = {"input": message.content} | |
| # Define the base configuration | |
| cb = cl.AsyncLangchainCallbackHandler() | |
| chain_config = { | |
| "configurable": { | |
| "user_id": self.user["user_id"], | |
| "conversation_id": self.user["session_id"], | |
| "memory_window": self.config["llm_params"]["memory_window"], | |
| }, | |
| "callbacks": ( | |
| [cb] | |
| if cl_data._data_layer and self.config["chat_logging"]["callbacks"] | |
| else None | |
| ), | |
| } | |
| with get_openai_callback() as token_count_cb: | |
| if stream: | |
| res = chain.stream(user_query=user_query_dict, config=chain_config) | |
| res = await self.stream_response(res) | |
| else: | |
| res = await chain.invoke( | |
| user_query=user_query_dict, | |
| config=chain_config, | |
| ) | |
| token_count += token_count_cb.total_tokens | |
| answer = res.get("answer", res.get("result")) | |
| answer_with_sources, source_elements, sources_dict = get_sources( | |
| res, answer, stream=stream, view_sources=view_sources | |
| ) | |
| answer_with_sources = answer_with_sources.replace("$$", "$") | |
| actions = [] | |
| if self.config["llm_params"]["generate_follow_up"]: | |
| cb_follow_up = cl.AsyncLangchainCallbackHandler() | |
| config = { | |
| "callbacks": ( | |
| [cb_follow_up] | |
| if cl_data._data_layer and self.config["chat_logging"]["callbacks"] | |
| else None | |
| ) | |
| } | |
| with get_openai_callback() as token_count_cb: | |
| list_of_questions = await self.question_generator.generate_questions( | |
| query=user_query_dict["input"], | |
| response=answer, | |
| chat_history=res.get("chat_history"), | |
| context=res.get("context"), | |
| config=config, | |
| ) | |
| token_count += token_count_cb.total_tokens | |
| for question in list_of_questions: | |
| actions.append( | |
| cl.Action( | |
| name="follow up question", | |
| value="example_value", | |
| description=question, | |
| label=question, | |
| ) | |
| ) | |
| await cl.Message( | |
| content=answer_with_sources, | |
| elements=source_elements, | |
| author=LLM, | |
| actions=actions, | |
| ).send() | |
| async def on_follow_up(self, action: cl.Action): | |
| user = cl.user_session.get("user") | |
| message = await cl.Message( | |
| content=action.description, | |
| type="user_message", | |
| author=user.identifier, | |
| ).send() | |
| async with cl.Step( | |
| name="on_follow_up", type="run", parent_id=message.id | |
| ) as step: | |
| await self.main(message) | |
| step.output = message.content | |
| chatbot = Chatbot(config=config) | |
| async def start_app(): | |
| cl.set_starters(chatbot.set_starters) | |
| cl.author_rename(chatbot.rename) | |
| cl.on_chat_start(chatbot.start) | |
| cl.on_message(chatbot.main) | |
| cl.on_settings_update(chatbot.update_llm) | |
| cl.action_callback("follow up question")(chatbot.on_follow_up) | |
| loop = asyncio.get_event_loop() | |
| if loop.is_running(): | |
| asyncio.ensure_future(start_app()) | |
| else: | |
| asyncio.run(start_app()) | |