Spaces:
Build error
Build error
XThomasBU
commited on
Commit
·
c82efb6
1
Parent(s):
e488f16
format changes
Browse files- code/app.py +3 -3
- code/main.py +0 -2
- code/modules/chat/helpers.py +0 -2
- code/modules/chat/langchain/langchain_rag.py +0 -1
- code/modules/chat/langchain/utils.py +0 -3
- code/modules/chat_processor/helpers.py +0 -2
- code/modules/config/project_config.yml +1 -1
- code/modules/dataloader/data_loader.py +11 -9
- code/modules/retriever/helpers.py +0 -1
- code/modules/vectorstore/store_manager.py +6 -7
code/app.py
CHANGED
|
@@ -242,9 +242,9 @@ async def post_signin(request: Request):
|
|
| 242 |
user_details.metadata["last_login"] = current_datetime
|
| 243 |
# if new user, set the number of tries
|
| 244 |
if "tokens_left" not in user_details.metadata:
|
| 245 |
-
user_details.metadata[
|
| 246 |
-
|
| 247 |
-
|
| 248 |
if "all_time_tokens_allocated" not in user_details.metadata:
|
| 249 |
user_details.metadata["all_time_tokens_allocated"] = ALL_TIME_TOKENS_ALLOCATED
|
| 250 |
if "in_cooldown" not in user_details.metadata:
|
|
|
|
| 242 |
user_details.metadata["last_login"] = current_datetime
|
| 243 |
# if new user, set the number of tries
|
| 244 |
if "tokens_left" not in user_details.metadata:
|
| 245 |
+
user_details.metadata[
|
| 246 |
+
"tokens_left"
|
| 247 |
+
] = TOKENS_LEFT # set the number of tokens left for the new user
|
| 248 |
if "all_time_tokens_allocated" not in user_details.metadata:
|
| 249 |
user_details.metadata["all_time_tokens_allocated"] = ALL_TIME_TOKENS_ALLOCATED
|
| 250 |
if "in_cooldown" not in user_details.metadata:
|
code/main.py
CHANGED
|
@@ -505,7 +505,6 @@ class Chatbot:
|
|
| 505 |
token_count += token_count_cb.total_tokens
|
| 506 |
|
| 507 |
for question in list_of_questions:
|
| 508 |
-
|
| 509 |
actions.append(
|
| 510 |
cl.Action(
|
| 511 |
name="follow up question",
|
|
@@ -549,7 +548,6 @@ class Chatbot:
|
|
| 549 |
|
| 550 |
@cl.header_auth_callback
|
| 551 |
def header_auth_callback(headers: dict) -> Optional[cl.User]:
|
| 552 |
-
|
| 553 |
print("\n\n\nI am here\n\n\n")
|
| 554 |
# try: # TODO: Add try-except block after testing
|
| 555 |
# TODO: Implement to get the user information from the headers (not the cookie)
|
|
|
|
| 505 |
token_count += token_count_cb.total_tokens
|
| 506 |
|
| 507 |
for question in list_of_questions:
|
|
|
|
| 508 |
actions.append(
|
| 509 |
cl.Action(
|
| 510 |
name="follow up question",
|
|
|
|
| 548 |
|
| 549 |
@cl.header_auth_callback
|
| 550 |
def header_auth_callback(headers: dict) -> Optional[cl.User]:
|
|
|
|
| 551 |
print("\n\n\nI am here\n\n\n")
|
| 552 |
# try: # TODO: Add try-except block after testing
|
| 553 |
# TODO: Implement to get the user information from the headers (not the cookie)
|
code/modules/chat/helpers.py
CHANGED
|
@@ -42,7 +42,6 @@ def get_sources(res, answer, stream=True, view_sources=False):
|
|
| 42 |
full_answer += answer
|
| 43 |
|
| 44 |
if view_sources:
|
| 45 |
-
|
| 46 |
# Then, display the sources
|
| 47 |
# check if the answer has sources
|
| 48 |
if len(source_dict) == 0:
|
|
@@ -51,7 +50,6 @@ def get_sources(res, answer, stream=True, view_sources=False):
|
|
| 51 |
else:
|
| 52 |
full_answer += "\n\n**Sources:**\n"
|
| 53 |
for idx, (url_name, source_data) in enumerate(source_dict.items()):
|
| 54 |
-
|
| 55 |
full_answer += f"\nSource {idx + 1} (Score: {source_data['score']}): {source_data['url']}\n"
|
| 56 |
|
| 57 |
name = f"Source {idx + 1} Text\n"
|
|
|
|
| 42 |
full_answer += answer
|
| 43 |
|
| 44 |
if view_sources:
|
|
|
|
| 45 |
# Then, display the sources
|
| 46 |
# check if the answer has sources
|
| 47 |
if len(source_dict) == 0:
|
|
|
|
| 50 |
else:
|
| 51 |
full_answer += "\n\n**Sources:**\n"
|
| 52 |
for idx, (url_name, source_data) in enumerate(source_dict.items()):
|
|
|
|
| 53 |
full_answer += f"\nSource {idx + 1} (Score: {source_data['score']}): {source_data['url']}\n"
|
| 54 |
|
| 55 |
name = f"Source {idx + 1} Text\n"
|
code/modules/chat/langchain/langchain_rag.py
CHANGED
|
@@ -19,7 +19,6 @@ from .utils import (
|
|
| 19 |
|
| 20 |
|
| 21 |
class Langchain_RAG_V1(BaseRAG):
|
| 22 |
-
|
| 23 |
def __init__(
|
| 24 |
self,
|
| 25 |
llm,
|
|
|
|
| 19 |
|
| 20 |
|
| 21 |
class Langchain_RAG_V1(BaseRAG):
|
|
|
|
| 22 |
def __init__(
|
| 23 |
self,
|
| 24 |
llm,
|
code/modules/chat/langchain/utils.py
CHANGED
|
@@ -26,7 +26,6 @@ CHAT_TURN_TYPE = Union[Tuple[str, str], BaseMessage]
|
|
| 26 |
|
| 27 |
|
| 28 |
class CustomConversationalRetrievalChain(ConversationalRetrievalChain):
|
| 29 |
-
|
| 30 |
def _get_chat_history(self, chat_history: List[CHAT_TURN_TYPE]) -> str:
|
| 31 |
_ROLE_MAP = {"human": "Student: ", "ai": "AI Tutor: "}
|
| 32 |
buffer = ""
|
|
@@ -139,7 +138,6 @@ class CustomConversationalRetrievalChain(ConversationalRetrievalChain):
|
|
| 139 |
|
| 140 |
|
| 141 |
class CustomRunnableWithHistory(RunnableWithMessageHistory):
|
| 142 |
-
|
| 143 |
def _get_chat_history(self, chat_history: List[CHAT_TURN_TYPE]) -> str:
|
| 144 |
_ROLE_MAP = {"human": "Student: ", "ai": "AI Tutor: "}
|
| 145 |
buffer = ""
|
|
@@ -282,7 +280,6 @@ def create_retrieval_chain(
|
|
| 282 |
|
| 283 |
# TODO: Remove Hard-coded values
|
| 284 |
async def return_questions(query, response, chat_history_str, context, config):
|
| 285 |
-
|
| 286 |
system = (
|
| 287 |
"You are someone that suggests a question based on the student's input and chat history. "
|
| 288 |
"Generate a question that is relevant to the student's input and chat history. "
|
|
|
|
| 26 |
|
| 27 |
|
| 28 |
class CustomConversationalRetrievalChain(ConversationalRetrievalChain):
|
|
|
|
| 29 |
def _get_chat_history(self, chat_history: List[CHAT_TURN_TYPE]) -> str:
|
| 30 |
_ROLE_MAP = {"human": "Student: ", "ai": "AI Tutor: "}
|
| 31 |
buffer = ""
|
|
|
|
| 138 |
|
| 139 |
|
| 140 |
class CustomRunnableWithHistory(RunnableWithMessageHistory):
|
|
|
|
| 141 |
def _get_chat_history(self, chat_history: List[CHAT_TURN_TYPE]) -> str:
|
| 142 |
_ROLE_MAP = {"human": "Student: ", "ai": "AI Tutor: "}
|
| 143 |
buffer = ""
|
|
|
|
| 280 |
|
| 281 |
# TODO: Remove Hard-coded values
|
| 282 |
async def return_questions(query, response, chat_history_str, context, config):
|
|
|
|
| 283 |
system = (
|
| 284 |
"You are someone that suggests a question based on the student's input and chat history. "
|
| 285 |
"Generate a question that is relevant to the student's input and chat history. "
|
code/modules/chat_processor/helpers.py
CHANGED
|
@@ -156,7 +156,6 @@ async def update_user_info(user_info):
|
|
| 156 |
|
| 157 |
|
| 158 |
async def check_user_cooldown(user_info, current_time):
|
| 159 |
-
|
| 160 |
# # Check if no tokens left
|
| 161 |
tokens_left = user_info.metadata.get("tokens_left", 0)
|
| 162 |
if tokens_left > 0 and not user_info.metadata.get("in_cooldown", False):
|
|
@@ -214,7 +213,6 @@ async def reset_tokens_for_user(user_info):
|
|
| 214 |
|
| 215 |
# Calculate how many tokens should have been regenerated proportionally
|
| 216 |
if current_tokens < max_tokens:
|
| 217 |
-
|
| 218 |
# Calculate the regeneration rate per second based on REGEN_TIME for full regeneration
|
| 219 |
regeneration_rate_per_second = max_tokens / REGEN_TIME
|
| 220 |
|
|
|
|
| 156 |
|
| 157 |
|
| 158 |
async def check_user_cooldown(user_info, current_time):
|
|
|
|
| 159 |
# # Check if no tokens left
|
| 160 |
tokens_left = user_info.metadata.get("tokens_left", 0)
|
| 161 |
if tokens_left > 0 and not user_info.metadata.get("in_cooldown", False):
|
|
|
|
| 213 |
|
| 214 |
# Calculate how many tokens should have been regenerated proportionally
|
| 215 |
if current_tokens < max_tokens:
|
|
|
|
| 216 |
# Calculate the regeneration rate per second based on REGEN_TIME for full regeneration
|
| 217 |
regeneration_rate_per_second = max_tokens / REGEN_TIME
|
| 218 |
|
code/modules/config/project_config.yml
CHANGED
|
@@ -3,5 +3,5 @@ retriever:
|
|
| 3 |
RAGatouille: "XThomasBU/Colbert_Index"
|
| 4 |
|
| 5 |
metadata:
|
| 6 |
-
|
| 7 |
slide_base_link: "https://dl4ds.github.io"
|
|
|
|
| 3 |
RAGatouille: "XThomasBU/Colbert_Index"
|
| 4 |
|
| 5 |
metadata:
|
| 6 |
+
metadata_links: ["https://dl4ds.github.io/sp2024/lectures/", "https://dl4ds.github.io/sp2024/schedule/"]
|
| 7 |
slide_base_link: "https://dl4ds.github.io"
|
code/modules/dataloader/data_loader.py
CHANGED
|
@@ -222,7 +222,7 @@ class ChunkProcessor:
|
|
| 222 |
|
| 223 |
def chunk_docs(self, file_reader, uploaded_files, weblinks):
|
| 224 |
addl_metadata = get_metadata(
|
| 225 |
-
*self.config["metadata"]["
|
| 226 |
) # For any additional metadata
|
| 227 |
|
| 228 |
# remove already processed files if reparse_files is False
|
|
@@ -324,7 +324,6 @@ class ChunkProcessor:
|
|
| 324 |
return
|
| 325 |
|
| 326 |
try:
|
| 327 |
-
|
| 328 |
if file_path in self.document_data:
|
| 329 |
self.logger.warning(f"File {file_name} already processed")
|
| 330 |
documents = [
|
|
@@ -440,13 +439,16 @@ if __name__ == "__main__":
|
|
| 440 |
|
| 441 |
data_loader = DataLoader(config, logger=logger)
|
| 442 |
# Just for testing
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
|
|
|
|
|
|
|
|
|
| 450 |
)
|
| 451 |
|
| 452 |
print(document_names[:5])
|
|
|
|
| 222 |
|
| 223 |
def chunk_docs(self, file_reader, uploaded_files, weblinks):
|
| 224 |
addl_metadata = get_metadata(
|
| 225 |
+
*self.config["metadata"]["metadata_links"], self.config
|
| 226 |
) # For any additional metadata
|
| 227 |
|
| 228 |
# remove already processed files if reparse_files is False
|
|
|
|
| 324 |
return
|
| 325 |
|
| 326 |
try:
|
|
|
|
| 327 |
if file_path in self.document_data:
|
| 328 |
self.logger.warning(f"File {file_name} already processed")
|
| 329 |
documents = [
|
|
|
|
| 439 |
|
| 440 |
data_loader = DataLoader(config, logger=logger)
|
| 441 |
# Just for testing
|
| 442 |
+
(
|
| 443 |
+
document_chunks,
|
| 444 |
+
document_names,
|
| 445 |
+
documents,
|
| 446 |
+
document_metadata,
|
| 447 |
+
) = data_loader.get_chunks(
|
| 448 |
+
[
|
| 449 |
+
"https://dl4ds.github.io/fa2024/static_files/discussion_slides/00_discussion.pdf"
|
| 450 |
+
],
|
| 451 |
+
[],
|
| 452 |
)
|
| 453 |
|
| 454 |
print(document_names[:5])
|
code/modules/retriever/helpers.py
CHANGED
|
@@ -6,7 +6,6 @@ from typing import List
|
|
| 6 |
|
| 7 |
|
| 8 |
class VectorStoreRetrieverScore(VectorStoreRetriever):
|
| 9 |
-
|
| 10 |
# See https://github.com/langchain-ai/langchain/blob/61dd92f8215daef3d9cf1734b0d1f8c70c1571c3/libs/langchain/langchain/vectorstores/base.py#L500
|
| 11 |
def _get_relevant_documents(
|
| 12 |
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
class VectorStoreRetrieverScore(VectorStoreRetriever):
|
|
|
|
| 9 |
# See https://github.com/langchain-ai/langchain/blob/61dd92f8215daef3d9cf1734b0d1f8c70c1571c3/libs/langchain/langchain/vectorstores/base.py#L500
|
| 10 |
def _get_relevant_documents(
|
| 11 |
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
code/modules/vectorstore/store_manager.py
CHANGED
|
@@ -47,7 +47,6 @@ class VectorStoreManager:
|
|
| 47 |
return logger
|
| 48 |
|
| 49 |
def load_files(self):
|
| 50 |
-
|
| 51 |
files = os.listdir(self.config["vectorstore"]["data_path"])
|
| 52 |
files = [
|
| 53 |
os.path.join(self.config["vectorstore"]["data_path"], file)
|
|
@@ -69,7 +68,6 @@ class VectorStoreManager:
|
|
| 69 |
return files, urls
|
| 70 |
|
| 71 |
def create_embedding_model(self):
|
| 72 |
-
|
| 73 |
self.logger.info("Creating embedding function")
|
| 74 |
embedding_model_loader = EmbeddingModelLoader(self.config)
|
| 75 |
embedding_model = embedding_model_loader.load_embedding_model()
|
|
@@ -100,7 +98,6 @@ class VectorStoreManager:
|
|
| 100 |
)
|
| 101 |
|
| 102 |
def create_database(self):
|
| 103 |
-
|
| 104 |
start_time = time.time() # Start time for creating database
|
| 105 |
data_loader = DataLoader(self.config, self.logger)
|
| 106 |
self.logger.info("Loading data")
|
|
@@ -110,9 +107,12 @@ class VectorStoreManager:
|
|
| 110 |
self.logger.info(f"Number of webpages: {len(webpages)}")
|
| 111 |
if f"{self.config['vectorstore']['url_file_path']}" in files:
|
| 112 |
files.remove(f"{self.config['vectorstores']['url_file_path']}") # cleanup
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
| 116 |
num_documents = len(document_chunks)
|
| 117 |
self.logger.info(f"Number of documents in the DB: {num_documents}")
|
| 118 |
metadata_keys = list(document_metadata[0].keys()) if document_metadata else []
|
|
@@ -128,7 +128,6 @@ class VectorStoreManager:
|
|
| 128 |
)
|
| 129 |
|
| 130 |
def load_database(self):
|
| 131 |
-
|
| 132 |
start_time = time.time() # Start time for loading database
|
| 133 |
if self.config["vectorstore"]["db_option"] in ["FAISS", "Chroma", "RAPTOR"]:
|
| 134 |
self.embedding_model = self.create_embedding_model()
|
|
|
|
| 47 |
return logger
|
| 48 |
|
| 49 |
def load_files(self):
|
|
|
|
| 50 |
files = os.listdir(self.config["vectorstore"]["data_path"])
|
| 51 |
files = [
|
| 52 |
os.path.join(self.config["vectorstore"]["data_path"], file)
|
|
|
|
| 68 |
return files, urls
|
| 69 |
|
| 70 |
def create_embedding_model(self):
|
|
|
|
| 71 |
self.logger.info("Creating embedding function")
|
| 72 |
embedding_model_loader = EmbeddingModelLoader(self.config)
|
| 73 |
embedding_model = embedding_model_loader.load_embedding_model()
|
|
|
|
| 98 |
)
|
| 99 |
|
| 100 |
def create_database(self):
|
|
|
|
| 101 |
start_time = time.time() # Start time for creating database
|
| 102 |
data_loader = DataLoader(self.config, self.logger)
|
| 103 |
self.logger.info("Loading data")
|
|
|
|
| 107 |
self.logger.info(f"Number of webpages: {len(webpages)}")
|
| 108 |
if f"{self.config['vectorstore']['url_file_path']}" in files:
|
| 109 |
files.remove(f"{self.config['vectorstores']['url_file_path']}") # cleanup
|
| 110 |
+
(
|
| 111 |
+
document_chunks,
|
| 112 |
+
document_names,
|
| 113 |
+
documents,
|
| 114 |
+
document_metadata,
|
| 115 |
+
) = data_loader.get_chunks(files, webpages)
|
| 116 |
num_documents = len(document_chunks)
|
| 117 |
self.logger.info(f"Number of documents in the DB: {num_documents}")
|
| 118 |
metadata_keys = list(document_metadata[0].keys()) if document_metadata else []
|
|
|
|
| 128 |
)
|
| 129 |
|
| 130 |
def load_database(self):
|
|
|
|
| 131 |
start_time = time.time() # Start time for loading database
|
| 132 |
if self.config["vectorstore"]["db_option"] in ["FAISS", "Chroma", "RAPTOR"]:
|
| 133 |
self.embedding_model = self.create_embedding_model()
|