File size: 13,936 Bytes
62393c2
 
 
 
 
 
 
 
 
 
cf90625
 
50b2c95
cf90625
 
62393c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf90625
 
 
 
 
62393c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2338a9c
62393c2
 
 
 
 
 
2338a9c
62393c2
 
 
 
 
 
 
3cb6271
dcd6ad7
62393c2
 
 
 
 
 
 
 
 
 
 
3d83119
62393c2
 
 
 
1c479d7
62393c2
 
 
1c479d7
 
62393c2
 
 
 
 
 
2338a9c
 
 
 
 
 
 
62393c2
 
 
 
 
 
 
 
 
 
 
 
 
dcd6ad7
 
 
 
62393c2
 
 
cf90625
62393c2
cf90625
62393c2
2338a9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf90625
62393c2
 
 
cf90625
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import colorsys
import os

import gradio as gr
import numpy as np
import onnxruntime as ort
import pandas as pd
from PIL import Image, ImageDraw


# Use absolute paths instead of relative paths
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
MODEL_PATH = os.path.join(BASE_DIR, "models/deim-blood-cell-detection_small.onnx")
CLASS_NAMES_PATH = os.path.join(BASE_DIR, "models/classes.txt")

def resize_with_aspect_ratio(image, size, interpolation=Image.BILINEAR):
    """Resizes an image while maintaining aspect ratio and pads it."""
    original_width, original_height = image.size
    ratio = min(size / original_width, size / original_height)
    new_width = int(original_width * ratio)
    new_height = int(original_height * ratio)
    image = image.resize((new_width, new_height), interpolation)

    # Create a new image with the desired size and paste the resized image onto it
    new_image = Image.new("RGB", (size, size))
    new_image.paste(image, ((size - new_width) // 2, (size - new_height) // 2))
    return new_image, ratio, (size - new_width) // 2, (size - new_height) // 2


def generate_colors(num_classes):
    """Generate a list of distinct colors for different classes."""
    # Generate evenly spaced hues
    hsv_tuples = [(x / num_classes, 0.8, 0.9) for x in range(num_classes)]

    # Convert to RGB
    colors = []
    for hsv in hsv_tuples:
        rgb = colorsys.hsv_to_rgb(*hsv)
        # Convert to 0-255 range and to tuple
        colors.append(tuple(int(255 * x) for x in rgb))

    return colors


def draw(images, labels, boxes, scores, ratios, paddings, thrh=0.4, class_names=None):
    result_images = []

    # Generate colors for classes
    num_classes = (
        len(class_names) if class_names else 91
    )  # Use length of class_names if available, otherwise default to COCO's 91 classes
    colors = generate_colors(num_classes)

    for i, im in enumerate(images):
        draw = ImageDraw.Draw(im)
        scr = scores[i]
        lab = labels[i][scr > thrh]
        box = boxes[i][scr > thrh]
        scr = scr[scr > thrh]

        ratio = ratios[i]
        pad_w, pad_h = paddings[i]

        for lbl, bb in zip(lab, box):
            # Get color for this class
            class_idx = int(lbl)
            color = colors[class_idx % len(colors)]

            # Convert RGB to hex for PIL
            hex_color = "#{:02x}{:02x}{:02x}".format(*color)

            # Adjust bounding boxes according to the resizing and padding
            bb = [
                (bb[0] - pad_w) / ratio,
                (bb[1] - pad_h) / ratio,
                (bb[2] - pad_w) / ratio,
                (bb[3] - pad_h) / ratio,
            ]

            # Draw rectangle with class-specific color
            draw.rectangle(bb, outline=hex_color, width=3)

            # Use class name if available, otherwise use class index
            if class_names and class_idx < len(class_names):
                label_text = f"{class_names[class_idx]} {scr[lab == lbl][0]:.2f}"
            else:
                label_text = f"Class {class_idx} {scr[lab == lbl][0]:.2f}"

            # Draw text background
            text_size = draw.textbbox((0, 0), label_text, font=None)
            text_width = text_size[2] - text_size[0]
            text_height = text_size[3] - text_size[1]

            # Draw text background rectangle
            draw.rectangle(
                [bb[0], bb[1] - text_height - 4, bb[0] + text_width + 4, bb[1]],
                fill=hex_color,
            )

            # Draw text in white or black depending on color brightness
            brightness = (color[0] * 299 + color[1] * 587 + color[2] * 114) / 1000
            text_color = "black" if brightness > 128 else "white"

            # Draw text
            draw.text(
                (bb[0] + 2, bb[1] - text_height - 2), text=label_text, fill=text_color
            )

        result_images.append(im)
    return result_images


def load_model(model_path):
    """
    Load an ONNX model for inference.

    Args:
        model_path: Path to the ONNX model file

    Returns:
        tuple: (session, error_message)
    """
    providers = ["CPUExecutionProvider"]

    try:
        # Print the model path to debug
        print(f"Loading model from: {model_path}")
        if not os.path.exists(model_path):
            return None, f"Model file not found at: {model_path}"
            
        sess = ort.InferenceSession(model_path, providers=providers)
        print(f"Using device: {ort.get_device()}")
        return sess, None
    except Exception as e:
        return None, f"Error creating inference session: {e}"


def load_class_names(class_names_path):
    """
    Load class names from a text file.

    Args:
        class_names_path: Path to a text file with class names (one per line)

    Returns:
        list: Class names or None if loading failed
    """
    if not class_names_path or not os.path.exists(class_names_path):
        return None

    try:
        with open(class_names_path, "r") as f:
            class_names = [line.strip() for line in f.readlines()]
        print(f"Loaded {len(class_names)} class names")
        return class_names
    except Exception as e:
        print(f"Error loading class names: {e}")
        return None


def prepare_image(image):
    """
    Prepare image for inference by converting to PIL and resizing.

    Args:
        image: Input image (PIL or numpy array)

    Returns:
        tuple: (resized_image, original_image, ratio, padding)
    """
    # Convert to PIL image if needed
    if not isinstance(image, Image.Image):
        image = Image.fromarray(image).convert("RGB")

    # Resize image while preserving aspect ratio
    resized_image, ratio, pad_w, pad_h = resize_with_aspect_ratio(image, 640)

    return resized_image, image, ratio, (pad_w, pad_h)


def run_inference(session, image):
    """
    Run inference on the prepared image.

    Args:
        session: ONNX runtime session
        image: Prepared PIL image

    Returns:
        tuple: (labels, boxes, scores)
    """
    # Get original image dimensions
    orig_height, orig_width = image.size[1], image.size[0]
    # Convert to int64 as expected by the model
    orig_size = np.array([[orig_height, orig_width]], dtype=np.int64)

    # Convert PIL image to numpy array and normalize to 0-1 range
    im_data = np.array(image, dtype=np.float32) / 255.0
    # Transpose from HWC to CHW format
    im_data = im_data.transpose(2, 0, 1)
    # Add batch dimension
    im_data = np.expand_dims(im_data, axis=0)

    output = session.run(
        output_names=None,
        input_feed={"images": im_data, "orig_target_sizes": orig_size},
    )

    return output  # labels, boxes, scores


def count_objects(labels, scores, confidence_threshold, class_names):
    """
    Count detected objects by class.

    Args:
        labels: Detection labels
        scores: Detection confidence scores
        confidence_threshold: Minimum confidence threshold
        class_names: List of class names

    Returns:
        dict: Counts of objects by class
    """
    object_counts = {}
    for i, score_batch in enumerate(scores):
        for j, score in enumerate(score_batch):
            if score >= confidence_threshold:
                label = labels[i][j]
                class_name = (
                    class_names[label]
                    if class_names and label < len(class_names)
                    else f"Class {label}"
                )
                object_counts[class_name] = object_counts.get(class_name, 0) + 1

    return object_counts


def create_status_message(object_counts):
    """
    Create a status message with object counts.

    Args:
        object_counts: Dictionary of object counts by class

    Returns:
        str: Formatted status message
    """
    status_message = "Detection completed successfully\n\nObjects detected:"
    if object_counts:
        for class_name, count in object_counts.items():
            status_message += f"\n- {class_name}: {count}"
    else:
        status_message += "\n- No objects detected above confidence threshold"

    return status_message


def create_bar_data(object_counts):
    """
    Create data for the bar plot visualization.

    Args:
        object_counts: Dictionary of object counts by class

    Returns:
        DataFrame: Data for bar plot
    """
    if object_counts:
        # Sort by count in descending order
        sorted_counts = sorted(object_counts.items(), key=lambda x: x[1], reverse=True)
        class_names_list = [item[0] for item in sorted_counts]
        counts_list = [item[1] for item in sorted_counts]
        # Create a pandas DataFrame for the bar plot
        return pd.DataFrame({"Class": class_names_list, "Count": counts_list})
    else:
        return pd.DataFrame({"Class": ["No objects detected"], "Count": [0]})


def predict(image, model_path, class_names_path, confidence_threshold):
    """
    Main prediction function that orchestrates the detection pipeline.

    Args:
        image: Input image
        model_path: Path to ONNX model
        class_names_path: Path to class names file
        confidence_threshold: Detection confidence threshold

    Returns:
        tuple: (result_image, status_message, bar_data)
    """
    # Load model
    session, error = load_model(model_path)
    if error:
        return None, error, None

    # Load class names
    class_names = load_class_names(class_names_path)

    try:
        # Prepare image
        resized_image, original_image, ratio, padding = prepare_image(image)

        # Run inference
        labels, boxes, scores = run_inference(session, resized_image)

        # Draw detections on the original image
        result_images = draw(
            [original_image],
            labels,
            boxes,
            scores,
            [ratio],
            [padding],
            thrh=confidence_threshold,
            class_names=class_names,
        )

        # Count objects by class
        object_counts = count_objects(labels, scores, confidence_threshold, class_names)

        # Create status message
        status_message = create_status_message(object_counts)

        # Create bar plot data
        bar_data = create_bar_data(object_counts)

        return result_images[0], status_message, bar_data
    except Exception as e:
        return None, f"Error during inference: {e}", None


def build_interface(model_path, class_names_path, example_images=None):
    """
    Build the Gradio interface components.

    Args:
        model_path: Path to the ONNX model
        class_names_path: Path to the class names file
        example_images: List of example image paths

    Returns:
        gr.Blocks: The Gradio demo interface
    """
    with gr.Blocks(title="Blood Cell Detection") as demo:
        gr.Markdown("# Blood Cell Detection")
        gr.Markdown("Upload an image to detect blood cells. The model can detect 3 types of blood cells: red blood cells, white blood cells and platelets.")
        gr.Markdown("Model is trained using DEIM-D-FINE model S.")
        

        with gr.Row():
            with gr.Column():
                input_image = gr.Image(type="pil", label="Input Image")
                confidence = gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    value=0.4,
                    step=0.05,
                    label="Confidence Threshold",
                )
                submit_btn = gr.Button("Count Cells!", variant="primary")

            with gr.Column():
                output_image = gr.Image(type="pil", label="Detection Result")

                with gr.Row(equal_height=True):
                    output_message = gr.Textbox(label="Status")

                    count_plot = gr.BarPlot(
                        x="Class",
                        y="Count",
                        title="Object Counts",
                        tooltip=["Class", "Count"],
                        height=300,
                        orientation="h",
                        label_title="Object Counts",
                    )
        
        # Add examples component if example images are provided
        if example_images:
            gr.Examples(
                examples=example_images,
                inputs=input_image,
            )

        # Set up the click event inside the Blocks context
        submit_btn.click(
            fn=predict,
            inputs=[
                input_image,
                gr.State(model_path),
                gr.State(class_names_path),
                confidence,
            ],
            outputs=[output_image, output_message, count_plot],
        )

        with gr.Row():
            with gr.Column():
                gr.HTML("<div style='text-align: center; margin: 0 auto;'>Created by <a href='https://dicksonneoh.com' target='_blank'>Dickson Neoh</a>.</div>")

        return demo


def launch_demo():
    """
    Launch the Gradio demo with hardcoded model and class names paths.
    """
    # Create examples directory if it doesn't exist
    examples_dir = os.path.join(BASE_DIR, "examples")
    if not os.path.exists(examples_dir):
        os.makedirs(examples_dir)
        print(f"Created examples directory at {examples_dir}")
    
    # Get list of example images
    example_images = []
    if os.path.exists(examples_dir):
        example_images = [
            os.path.join(examples_dir, f) 
            for f in os.listdir(examples_dir) 
            if f.lower().endswith(('.png', '.jpg', '.jpeg'))
        ]
        print(f"Found {len(example_images)} example images")
    
    demo = build_interface(MODEL_PATH, CLASS_NAMES_PATH, example_images)
    
    # Launch the demo without the examples parameter
    demo.launch(share=False)  # Set share=True if you want to create a shareable link


if __name__ == "__main__":
    launch_demo()