Tiago Caldeira
commited on
Commit
Β·
3d582fc
1
Parent(s):
9f37a6e
different approach using unsloth model
Browse files
app.py
CHANGED
|
@@ -1,28 +1,27 @@
|
|
| 1 |
import torch
|
| 2 |
import gradio as gr
|
| 3 |
-
from
|
| 4 |
-
from transformers import TextStreamer, AutoTokenizer
|
| 5 |
import textwrap
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
| 15 |
)
|
| 16 |
|
| 17 |
model.eval()
|
| 18 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 19 |
-
model.to(device)
|
| 20 |
|
| 21 |
-
#
|
| 22 |
def print_response(text: str) -> str:
|
| 23 |
return "\n".join(textwrap.fill(line, 100) for line in text.split("\n"))
|
| 24 |
|
| 25 |
-
#
|
| 26 |
def predict_text(system_prompt: str, user_prompt: str) -> str:
|
| 27 |
messages = [
|
| 28 |
{"role": "system", "content": [{"type": "text", "text": system_prompt.strip()}]},
|
|
@@ -34,23 +33,24 @@ def predict_text(system_prompt: str, user_prompt: str) -> str:
|
|
| 34 |
add_generation_prompt=True,
|
| 35 |
tokenize=True,
|
| 36 |
return_dict=True,
|
| 37 |
-
return_tensors="pt"
|
| 38 |
-
).to(
|
|
|
|
|
|
|
| 39 |
|
| 40 |
with torch.inference_mode():
|
| 41 |
-
|
| 42 |
**inputs,
|
| 43 |
-
max_new_tokens=
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
top_k=64,
|
| 47 |
)
|
| 48 |
|
| 49 |
-
generated =
|
| 50 |
decoded = tokenizer.decode(generated, skip_special_tokens=True)
|
| 51 |
return print_response(decoded)
|
| 52 |
|
| 53 |
-
#
|
| 54 |
demo = gr.Interface(
|
| 55 |
fn=predict_text,
|
| 56 |
inputs=[
|
|
@@ -58,10 +58,5 @@ demo = gr.Interface(
|
|
| 58 |
gr.Textbox(lines=4, label="User Prompt", placeholder="Ask something..."),
|
| 59 |
],
|
| 60 |
outputs=gr.Textbox(label="Gemma 3n Response"),
|
| 61 |
-
title="Gemma 3n
|
| 62 |
-
description="Interact with the Gemma 3n language model using plain text. 4-bit quantized for efficiency.",
|
| 63 |
-
)
|
| 64 |
-
|
| 65 |
-
if __name__ == "__main__":
|
| 66 |
-
demo.launch()
|
| 67 |
|
|
|
|
| 1 |
import torch
|
| 2 |
import gradio as gr
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
|
|
|
|
| 4 |
import textwrap
|
| 5 |
|
| 6 |
+
model_id = "unsloth/gemma-3n-E2B-it-unsloth-bnb-4bit"
|
| 7 |
+
|
| 8 |
+
# Load tokenizer
|
| 9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 10 |
+
|
| 11 |
+
# Load model in full precision on CPU β no bitsandbytes
|
| 12 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 13 |
+
model_id,
|
| 14 |
+
device_map="cpu", # Force CPU
|
| 15 |
+
torch_dtype=torch.float32, # Use FP32 to ensure CPU compatibility
|
| 16 |
)
|
| 17 |
|
| 18 |
model.eval()
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
# Helper to format response nicely
|
| 21 |
def print_response(text: str) -> str:
|
| 22 |
return "\n".join(textwrap.fill(line, 100) for line in text.split("\n"))
|
| 23 |
|
| 24 |
+
# Inference function for Gradio
|
| 25 |
def predict_text(system_prompt: str, user_prompt: str) -> str:
|
| 26 |
messages = [
|
| 27 |
{"role": "system", "content": [{"type": "text", "text": system_prompt.strip()}]},
|
|
|
|
| 33 |
add_generation_prompt=True,
|
| 34 |
tokenize=True,
|
| 35 |
return_dict=True,
|
| 36 |
+
return_tensors="pt"
|
| 37 |
+
).to("cpu")
|
| 38 |
+
|
| 39 |
+
input_len = inputs["input_ids"].shape[-1]
|
| 40 |
|
| 41 |
with torch.inference_mode():
|
| 42 |
+
output = model.generate(
|
| 43 |
**inputs,
|
| 44 |
+
max_new_tokens=300,
|
| 45 |
+
do_sample=False,
|
| 46 |
+
use_cache=False # Important for CPU compatibility
|
|
|
|
| 47 |
)
|
| 48 |
|
| 49 |
+
generated = output[0][input_len:]
|
| 50 |
decoded = tokenizer.decode(generated, skip_special_tokens=True)
|
| 51 |
return print_response(decoded)
|
| 52 |
|
| 53 |
+
# Gradio UI
|
| 54 |
demo = gr.Interface(
|
| 55 |
fn=predict_text,
|
| 56 |
inputs=[
|
|
|
|
| 58 |
gr.Textbox(lines=4, label="User Prompt", placeholder="Ask something..."),
|
| 59 |
],
|
| 60 |
outputs=gr.Textbox(label="Gemma 3n Response"),
|
| 61 |
+
title="Gemma 3n Chat (CPU-friendly
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|