Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,50 +1,67 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
-
|
| 4 |
import spaces
|
| 5 |
import torch
|
| 6 |
import random
|
| 7 |
from PIL import Image
|
| 8 |
-
|
| 9 |
from pipeline_flux_kontext import FluxKontextPipeline
|
| 10 |
from diffusers import FluxTransformer2DModel
|
| 11 |
from diffusers.utils import load_image
|
| 12 |
-
|
| 13 |
from huggingface_hub import hf_hub_download
|
| 14 |
|
| 15 |
-
|
| 16 |
-
kontext_path = hf_hub_download(repo_id="diffusers/kontext-v2", filename="dev-opt-2-a-3.safetensors")
|
| 17 |
-
|
| 18 |
MAX_SEED = np.iinfo(np.int32).max
|
| 19 |
|
| 20 |
-
|
| 21 |
-
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=torch.bfloat16).to("cuda")
|
| 22 |
|
| 23 |
@spaces.GPU
|
| 24 |
-
def infer(input_image, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
if randomize_seed:
|
| 27 |
seed = random.randint(0, MAX_SEED)
|
| 28 |
|
| 29 |
input_image = input_image.convert("RGB")
|
| 30 |
-
# original_width, original_height = input_image.size
|
| 31 |
-
|
| 32 |
-
# if original_width >= original_height:
|
| 33 |
-
# new_width = 1024
|
| 34 |
-
# new_height = int(original_height * (new_width / original_width))
|
| 35 |
-
# new_height = round(new_height / 64) * 64
|
| 36 |
-
# else:
|
| 37 |
-
# new_height = 1024
|
| 38 |
-
# new_width = int(original_width * (new_height / original_height))
|
| 39 |
-
# new_width = round(new_width / 64) * 64
|
| 40 |
-
|
| 41 |
-
#input_image_resized = input_image.resize((new_width, new_height), Image.LANCZOS)
|
| 42 |
image = pipe(
|
| 43 |
image=input_image,
|
| 44 |
prompt=prompt,
|
| 45 |
guidance_scale=guidance_scale,
|
| 46 |
-
# width=new_width,
|
| 47 |
-
# height=new_height,
|
| 48 |
generator=torch.Generator().manual_seed(seed),
|
| 49 |
).images[0]
|
| 50 |
return image, seed, gr.update(visible=True)
|
|
@@ -60,8 +77,8 @@ with gr.Blocks(css=css) as demo:
|
|
| 60 |
|
| 61 |
with gr.Column(elem_id="col-container"):
|
| 62 |
gr.Markdown(f"""# FLUX.1 Kontext [dev]
|
|
|
|
| 63 |
""")
|
| 64 |
-
|
| 65 |
with gr.Row():
|
| 66 |
with gr.Column():
|
| 67 |
input_image = gr.Image(label="Upload the image for editing", type="pil")
|
|
@@ -75,7 +92,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 75 |
)
|
| 76 |
run_button = gr.Button("Run", scale=0)
|
| 77 |
with gr.Accordion("Advanced Settings", open=False):
|
| 78 |
-
|
| 79 |
seed = gr.Slider(
|
| 80 |
label="Seed",
|
| 81 |
minimum=0,
|
|
@@ -94,16 +111,23 @@ with gr.Blocks(css=css) as demo:
|
|
| 94 |
value=2.5,
|
| 95 |
)
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
with gr.Column():
|
| 98 |
result = gr.Image(label="Result", show_label=False, interactive=False)
|
| 99 |
reuse_button = gr.Button("Reuse this image", visible=False)
|
| 100 |
|
| 101 |
|
| 102 |
-
|
| 103 |
gr.on(
|
| 104 |
triggers=[run_button.click, prompt.submit],
|
| 105 |
fn = infer,
|
| 106 |
-
inputs = [input_image, prompt, seed, randomize_seed, guidance_scale],
|
| 107 |
outputs = [result, seed, reuse_button]
|
| 108 |
)
|
| 109 |
reuse_button.click(
|
|
@@ -112,4 +136,4 @@ with gr.Blocks(css=css) as demo:
|
|
| 112 |
outputs = [input_image]
|
| 113 |
)
|
| 114 |
|
| 115 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
|
|
|
| 3 |
import spaces
|
| 4 |
import torch
|
| 5 |
import random
|
| 6 |
from PIL import Image
|
|
|
|
| 7 |
from pipeline_flux_kontext import FluxKontextPipeline
|
| 8 |
from diffusers import FluxTransformer2DModel
|
| 9 |
from diffusers.utils import load_image
|
|
|
|
| 10 |
from huggingface_hub import hf_hub_download
|
| 11 |
|
|
|
|
|
|
|
|
|
|
| 12 |
MAX_SEED = np.iinfo(np.int32).max
|
| 13 |
|
| 14 |
+
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", revision="refs/pr/2", torch_dtype=torch.bfloat16).to("cuda")
|
|
|
|
| 15 |
|
| 16 |
@spaces.GPU
|
| 17 |
+
def infer(input_image, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, steps=28, progress=gr.Progress(track_tqdm=True)):
|
| 18 |
+
"""
|
| 19 |
+
Perform image editing using the FLUX.1 Kontext pipeline.
|
| 20 |
+
|
| 21 |
+
This function takes an input image and a text prompt to generate a modified version
|
| 22 |
+
of the image based on the provided instructions. It uses the FLUX.1 Kontext model
|
| 23 |
+
for contextual image editing tasks.
|
| 24 |
+
|
| 25 |
+
Args:
|
| 26 |
+
input_image (PIL.Image.Image): The input image to be edited. Will be converted
|
| 27 |
+
to RGB format if not already in that format.
|
| 28 |
+
prompt (str): Text description of the desired edit to apply to the image.
|
| 29 |
+
Examples: "Remove glasses", "Add a hat", "Change background to beach".
|
| 30 |
+
seed (int, optional): Random seed for reproducible generation. Defaults to 42.
|
| 31 |
+
Must be between 0 and MAX_SEED (2^31 - 1).
|
| 32 |
+
randomize_seed (bool, optional): If True, generates a random seed instead of
|
| 33 |
+
using the provided seed value. Defaults to False.
|
| 34 |
+
guidance_scale (float, optional): Controls how closely the model follows the
|
| 35 |
+
prompt. Higher values mean stronger adherence to the prompt but may reduce
|
| 36 |
+
image quality. Range: 1.0-10.0. Defaults to 2.5.
|
| 37 |
+
steps (int, optional): Controls how many steps to run the diffusion model for.
|
| 38 |
+
Range: 1-30. Defaults to 28.
|
| 39 |
+
progress (gr.Progress, optional): Gradio progress tracker for monitoring
|
| 40 |
+
generation progress. Defaults to gr.Progress(track_tqdm=True).
|
| 41 |
+
|
| 42 |
+
Returns:
|
| 43 |
+
tuple: A 3-tuple containing:
|
| 44 |
+
- PIL.Image.Image: The generated/edited image
|
| 45 |
+
- int: The seed value used for generation (useful when randomize_seed=True)
|
| 46 |
+
- gr.update: Gradio update object to make the reuse button visible
|
| 47 |
|
| 48 |
+
Example:
|
| 49 |
+
>>> edited_image, used_seed, button_update = infer(
|
| 50 |
+
... input_image=my_image,
|
| 51 |
+
... prompt="Add sunglasses",
|
| 52 |
+
... seed=123,
|
| 53 |
+
... randomize_seed=False,
|
| 54 |
+
... guidance_scale=2.5
|
| 55 |
+
... )
|
| 56 |
+
"""
|
| 57 |
if randomize_seed:
|
| 58 |
seed = random.randint(0, MAX_SEED)
|
| 59 |
|
| 60 |
input_image = input_image.convert("RGB")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
image = pipe(
|
| 62 |
image=input_image,
|
| 63 |
prompt=prompt,
|
| 64 |
guidance_scale=guidance_scale,
|
|
|
|
|
|
|
| 65 |
generator=torch.Generator().manual_seed(seed),
|
| 66 |
).images[0]
|
| 67 |
return image, seed, gr.update(visible=True)
|
|
|
|
| 77 |
|
| 78 |
with gr.Column(elem_id="col-container"):
|
| 79 |
gr.Markdown(f"""# FLUX.1 Kontext [dev]
|
| 80 |
+
Image editing and manipulation model guidance-distilled from FLUX.1 Kontext [pro], [[blog]](https://bfl.ai/announcements/flux-1-kontext-dev) [[model]](https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev)
|
| 81 |
""")
|
|
|
|
| 82 |
with gr.Row():
|
| 83 |
with gr.Column():
|
| 84 |
input_image = gr.Image(label="Upload the image for editing", type="pil")
|
|
|
|
| 92 |
)
|
| 93 |
run_button = gr.Button("Run", scale=0)
|
| 94 |
with gr.Accordion("Advanced Settings", open=False):
|
| 95 |
+
|
| 96 |
seed = gr.Slider(
|
| 97 |
label="Seed",
|
| 98 |
minimum=0,
|
|
|
|
| 111 |
value=2.5,
|
| 112 |
)
|
| 113 |
|
| 114 |
+
steps = gr.Slider(
|
| 115 |
+
label="Steps",
|
| 116 |
+
minimum=1,
|
| 117 |
+
maximum=30,
|
| 118 |
+
value=28,
|
| 119 |
+
step=1
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
with gr.Column():
|
| 123 |
result = gr.Image(label="Result", show_label=False, interactive=False)
|
| 124 |
reuse_button = gr.Button("Reuse this image", visible=False)
|
| 125 |
|
| 126 |
|
|
|
|
| 127 |
gr.on(
|
| 128 |
triggers=[run_button.click, prompt.submit],
|
| 129 |
fn = infer,
|
| 130 |
+
inputs = [input_image, prompt, seed, randomize_seed, guidance_scale, steps],
|
| 131 |
outputs = [result, seed, reuse_button]
|
| 132 |
)
|
| 133 |
reuse_button.click(
|
|
|
|
| 136 |
outputs = [input_image]
|
| 137 |
)
|
| 138 |
|
| 139 |
+
demo.launch(mcp_server=True)
|