Spaces:
Paused
Paused
| from __future__ import division | |
| from __future__ import print_function | |
| import os, glob, shutil, math, json | |
| from queue import Queue | |
| from threading import Thread | |
| from skimage.segmentation import mark_boundaries | |
| import numpy as np | |
| from PIL import Image | |
| import cv2, torch | |
| def get_gauss_kernel(size, sigma): | |
| '''Function to mimic the 'fspecial' gaussian MATLAB function''' | |
| x, y = np.mgrid[-size//2 + 1:size//2 + 1, -size//2 + 1:size//2 + 1] | |
| g = np.exp(-((x**2 + y**2)/(2.0*sigma**2))) | |
| return g/g.sum() | |
| def batchGray2Colormap(gray_batch): | |
| colormap = plt.get_cmap('viridis') | |
| heatmap_batch = [] | |
| for i in range(gray_batch.shape[0]): | |
| # quantize [-1,1] to {0,1} | |
| gray_map = gray_batch[i, :, :, 0] | |
| heatmap = (colormap(gray_map) * 2**16).astype(np.uint16)[:,:,:3] | |
| heatmap_batch.append(heatmap/127.5-1.0) | |
| return np.array(heatmap_batch) | |
| class PlotterThread(): | |
| '''log tensorboard data in a background thread to save time''' | |
| def __init__(self, writer): | |
| self.writer = writer | |
| self.task_queue = Queue(maxsize=0) | |
| worker = Thread(target=self.do_work, args=(self.task_queue,)) | |
| worker.setDaemon(True) | |
| worker.start() | |
| def do_work(self, q): | |
| while True: | |
| content = q.get() | |
| if content[-1] == 'image': | |
| self.writer.add_image(*content[:-1]) | |
| elif content[-1] == 'scalar': | |
| self.writer.add_scalar(*content[:-1]) | |
| else: | |
| raise ValueError | |
| q.task_done() | |
| def add_data(self, name, value, step, data_type='scalar'): | |
| self.task_queue.put([name, value, step, data_type]) | |
| def __len__(self): | |
| return self.task_queue.qsize() | |
| def save_images_from_batch(img_batch, save_dir, filename_list, batch_no=-1, suffix=None): | |
| N,H,W,C = img_batch.shape | |
| if C == 3: | |
| #! rgb color image | |
| for i in range(N): | |
| # [-1,1] >>> [0,255] | |
| image = Image.fromarray((127.5*(img_batch[i,:,:,:]+1.)).astype(np.uint8)) | |
| save_name = filename_list[i] if batch_no==-1 else '%05d.png' % (batch_no*N+i) | |
| save_name = save_name.replace('.png', '-%s.png'%suffix) if suffix else save_name | |
| image.save(os.path.join(save_dir, save_name), 'PNG') | |
| elif C == 1: | |
| #! single-channel gray image | |
| for i in range(N): | |
| # [-1,1] >>> [0,255] | |
| image = Image.fromarray((127.5*(img_batch[i,:,:,0]+1.)).astype(np.uint8)) | |
| save_name = filename_list[i] if batch_no==-1 else '%05d.png' % (batch_no*img_batch.shape[0]+i) | |
| save_name = save_name.replace('.png', '-%s.png'%suffix) if suffix else save_name | |
| image.save(os.path.join(save_dir, save_name), 'PNG') | |
| else: | |
| #! multi-channel: save each channel as a single image | |
| for i in range(N): | |
| # [-1,1] >>> [0,255] | |
| for j in range(C): | |
| image = Image.fromarray((127.5*(img_batch[i,:,:,j]+1.)).astype(np.uint8)) | |
| if batch_no == -1: | |
| _, file_name = os.path.split(filename_list[i]) | |
| name_only, _ = os.path.os.path.splitext(file_name) | |
| save_name = name_only + '_c%d.png' % j | |
| else: | |
| save_name = '%05d_c%d.png' % (batch_no*N+i, j) | |
| save_name = save_name.replace('.png', '-%s.png'%suffix) if suffix else save_name | |
| image.save(os.path.join(save_dir, save_name), 'PNG') | |
| return None | |
| def save_normLabs_from_batch(img_batch, save_dir, filename_list, batch_no=-1, suffix=None): | |
| N,H,W,C = img_batch.shape | |
| if C != 3: | |
| print('@Warning:the Lab images are NOT in 3 channels!') | |
| return None | |
| # denormalization: L: (L+1.0)*50.0 | a: a*110.0| b: b*110.0 | |
| img_batch[:,:,:,0] = img_batch[:,:,:,0] * 50.0 + 50.0 | |
| img_batch[:,:,:,1:3] = img_batch[:,:,:,1:3] * 110.0 | |
| #! convert into RGB color image | |
| for i in range(N): | |
| rgb_img = cv2.cvtColor(img_batch[i,:,:,:], cv2.COLOR_LAB2RGB) | |
| image = Image.fromarray((rgb_img*255.0).astype(np.uint8)) | |
| save_name = filename_list[i] if batch_no==-1 else '%05d.png' % (batch_no*N+i) | |
| save_name = save_name.replace('.png', '-%s.png'%suffix) if suffix else save_name | |
| image.save(os.path.join(save_dir, save_name), 'PNG') | |
| return None | |
| def save_markedSP_from_batch(img_batch, spix_batch, save_dir, filename_list, batch_no=-1, suffix=None): | |
| N,H,W,C = img_batch.shape | |
| #! img_batch: BGR nd-array (range:0~1) | |
| #! map_batch: single-channel spixel map | |
| #print('----------', img_batch.shape, spix_batch.shape) | |
| for i in range(N): | |
| norm_image = img_batch[i,:,:,:]*0.5+0.5 | |
| spixel_bd_image = mark_boundaries(norm_image, spix_batch[i,:,:,0].astype(int), color=(1,1,1)) | |
| #spixel_bd_image = cv2.cvtColor(spixel_bd_image, cv2.COLOR_BGR2RGB) | |
| image = Image.fromarray((spixel_bd_image*255.0).astype(np.uint8)) | |
| save_name = filename_list[i] if batch_no==-1 else '%05d.png' % (batch_no*N+i) | |
| save_name = save_name.replace('.png', '-%s.png'%suffix) if suffix else save_name | |
| image.save(os.path.join(save_dir, save_name), 'PNG') | |
| return None | |
| def get_filelist(data_dir): | |
| file_list = glob.glob(os.path.join(data_dir, '*.*')) | |
| file_list.sort() | |
| return file_list | |
| def collect_filenames(data_dir): | |
| file_list = get_filelist(data_dir) | |
| name_list = [] | |
| for file_path in file_list: | |
| _, file_name = os.path.split(file_path) | |
| name_list.append(file_name) | |
| name_list.sort() | |
| return name_list | |
| def exists_or_mkdir(path, need_remove=False): | |
| if not os.path.exists(path): | |
| os.makedirs(path) | |
| elif need_remove: | |
| shutil.rmtree(path) | |
| os.makedirs(path) | |
| return None | |
| def save_list(save_path, data_list, append_mode=False): | |
| n = len(data_list) | |
| if append_mode: | |
| with open(save_path, 'a') as f: | |
| f.writelines([str(data_list[i]) + '\n' for i in range(n-1,n)]) | |
| else: | |
| with open(save_path, 'w') as f: | |
| f.writelines([str(data_list[i]) + '\n' for i in range(n)]) | |
| return None | |
| def save_dict(save_path, dict): | |
| json.dumps(dict, open(save_path,"w")) | |
| return None | |
| if __name__ == '__main__': | |
| data_dir = '../PolyNet/PolyNet/cache/' | |
| #visualizeLossCurves(data_dir) | |
| clbar = GamutIndex() | |
| ab, ab_gamut_mask = clbar._get_gamut_mask() | |
| ab2q = clbar._get_ab_to_q(ab_gamut_mask) | |
| q2ab = clbar._get_q_to_ab(ab, ab_gamut_mask) | |
| maps = ab_gamut_mask*255.0 | |
| image = Image.fromarray(maps.astype(np.uint8)) | |
| image.save('gamut.png', 'PNG') | |
| print(ab2q.shape) | |
| print(q2ab.shape) | |
| print('label range:', np.min(ab2q), np.max(ab2q)) |