Spaces:
Runtime error
Runtime error
Bango lingo
commited on
Upload 2 files
Browse files- gradio_app.py +131 -0
- requirements.txt +9 -0
gradio_app.py
ADDED
|
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torchaudio
|
| 3 |
+
from einops import rearrange
|
| 4 |
+
from stable_audio_tools import get_pretrained_model
|
| 5 |
+
from stable_audio_tools.inference.generation import generate_diffusion_cond
|
| 6 |
+
from pydub import AudioSegment
|
| 7 |
+
import re
|
| 8 |
+
import os
|
| 9 |
+
from datetime import datetime
|
| 10 |
+
import gradio as gr
|
| 11 |
+
|
| 12 |
+
# Define the function to generate audio based on a prompt
|
| 13 |
+
def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, sampler_type):
|
| 14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
+
|
| 16 |
+
# Download model
|
| 17 |
+
model, model_config = get_pretrained_model("audo/stable-audio-open-1.0")
|
| 18 |
+
sample_rate = model_config["sample_rate"]
|
| 19 |
+
sample_size = model_config["sample_size"]
|
| 20 |
+
|
| 21 |
+
model = model.to(device)
|
| 22 |
+
|
| 23 |
+
# Set up text and timing conditioning
|
| 24 |
+
conditioning = [{
|
| 25 |
+
"prompt": prompt,
|
| 26 |
+
"seconds_start": 0,
|
| 27 |
+
"seconds_total": generation_time
|
| 28 |
+
}]
|
| 29 |
+
|
| 30 |
+
# Generate stereo audio
|
| 31 |
+
output = generate_diffusion_cond(
|
| 32 |
+
model,
|
| 33 |
+
steps=steps,
|
| 34 |
+
cfg_scale=cfg_scale,
|
| 35 |
+
conditioning=conditioning,
|
| 36 |
+
sample_size=sample_size,
|
| 37 |
+
sigma_min=sigma_min,
|
| 38 |
+
sigma_max=sigma_max,
|
| 39 |
+
sampler_type=sampler_type,
|
| 40 |
+
device=device,
|
| 41 |
+
seed=seed
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
# Rearrange audio batch to a single sequence
|
| 45 |
+
output = rearrange(output, "b d n -> d (b n)")
|
| 46 |
+
|
| 47 |
+
# Peak normalize, clip, convert to int16, and save to temporary file
|
| 48 |
+
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
|
| 49 |
+
torchaudio.save("temp_output.wav", output, sample_rate)
|
| 50 |
+
|
| 51 |
+
# Convert to MP3 format using pydub
|
| 52 |
+
audio = AudioSegment.from_wav("temp_output.wav")
|
| 53 |
+
|
| 54 |
+
# Create Output folder and dated subfolder if they do not exist
|
| 55 |
+
output_folder = "Output"
|
| 56 |
+
date_folder = datetime.now().strftime("%Y-%m-%d")
|
| 57 |
+
save_path = os.path.join(output_folder, date_folder)
|
| 58 |
+
os.makedirs(save_path, exist_ok=True)
|
| 59 |
+
|
| 60 |
+
# Generate a filename based on the prompt
|
| 61 |
+
filename = re.sub(r'\W+', '_', prompt) + ".mp3" # Replace non-alphanumeric characters with underscores
|
| 62 |
+
full_path = os.path.join(save_path, filename)
|
| 63 |
+
|
| 64 |
+
# Ensure the filename is unique by appending a number if the file already exists
|
| 65 |
+
base_filename = filename
|
| 66 |
+
counter = 1
|
| 67 |
+
while os.path.exists(full_path):
|
| 68 |
+
filename = f"{base_filename[:-4]}_{counter}.mp3"
|
| 69 |
+
full_path = os.path.join(save_path, filename)
|
| 70 |
+
counter += 1
|
| 71 |
+
|
| 72 |
+
# Export the audio to MP3 format
|
| 73 |
+
audio.export(full_path, format="mp3")
|
| 74 |
+
|
| 75 |
+
return full_path
|
| 76 |
+
|
| 77 |
+
def audio_generator(prompt, sampler_type, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed):
|
| 78 |
+
try:
|
| 79 |
+
print("Generating audio with parameters:")
|
| 80 |
+
print("Prompt:", prompt)
|
| 81 |
+
print("Sampler Type:", sampler_type)
|
| 82 |
+
print("Steps:", steps)
|
| 83 |
+
print("CFG Scale:", cfg_scale)
|
| 84 |
+
print("Sigma Min:", sigma_min)
|
| 85 |
+
print("Sigma Max:", sigma_max)
|
| 86 |
+
print("Generation Time:", generation_time)
|
| 87 |
+
print("Seed:", seed)
|
| 88 |
+
|
| 89 |
+
filename = generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, sampler_type)
|
| 90 |
+
return gr.Audio(filename), f"Generated: {filename}"
|
| 91 |
+
except Exception as e:
|
| 92 |
+
return str(e)
|
| 93 |
+
|
| 94 |
+
# Create Gradio interface
|
| 95 |
+
prompt_textbox = gr.Textbox(lines=5, label="Prompt")
|
| 96 |
+
sampler_dropdown = gr.Dropdown(
|
| 97 |
+
label="Sampler Type",
|
| 98 |
+
choices=[
|
| 99 |
+
"dpmpp-3m-sde",
|
| 100 |
+
"dpmpp-2m-sde",
|
| 101 |
+
"k-heun",
|
| 102 |
+
"k-lms",
|
| 103 |
+
"k-dpmpp-2s-ancestral",
|
| 104 |
+
"k-dpm-2",
|
| 105 |
+
"k-dpm-fast"
|
| 106 |
+
],
|
| 107 |
+
value="dpmpp-3m-sde"
|
| 108 |
+
)
|
| 109 |
+
steps_slider = gr.Slider(minimum=0, maximum=200, label="Steps", step=1)
|
| 110 |
+
steps_slider.value = 100 # Set the default value here
|
| 111 |
+
cfg_scale_slider = gr.Slider(minimum=0, maximum=15, label="CFG Scale", step=0.1)
|
| 112 |
+
cfg_scale_slider.value = 7 # Set the default value here
|
| 113 |
+
sigma_min_slider = gr.Slider(minimum=0, maximum=50, label="Sigma Min", step=0.1, value=0.3)
|
| 114 |
+
sigma_max_slider = gr.Slider(minimum=0, maximum=1000, label="Sigma Max", step=1, value=500)
|
| 115 |
+
generation_time_slider = gr.Slider(minimum=0, maximum=47, label="Generation Time (seconds)", step=1)
|
| 116 |
+
generation_time_slider.value = 47 # Set the default value here
|
| 117 |
+
seed_slider = gr.Slider(minimum=-1, maximum=999999, label="Seed", step=1)
|
| 118 |
+
seed_slider.value = 77212 # Set the default value here
|
| 119 |
+
|
| 120 |
+
output_textbox = gr.Textbox(label="Output")
|
| 121 |
+
|
| 122 |
+
title = "ππ StableAudioWebUI ππ"
|
| 123 |
+
description = "[Github Repository](https://github.com/Saganaki22/StableAudioWebUI)"
|
| 124 |
+
|
| 125 |
+
gr.Interface(
|
| 126 |
+
audio_generator,
|
| 127 |
+
[prompt_textbox, sampler_dropdown, steps_slider, cfg_scale_slider, sigma_min_slider, sigma_max_slider, generation_time_slider, seed_slider],
|
| 128 |
+
[gr.Audio(), output_textbox],
|
| 129 |
+
title=title,
|
| 130 |
+
description=description
|
| 131 |
+
).launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
torchvision
|
| 3 |
+
torchaudio
|
| 4 |
+
gradio
|
| 5 |
+
einops
|
| 6 |
+
stable_audio_tools
|
| 7 |
+
pydub
|
| 8 |
+
|
| 9 |
+
|