Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Create app.py
Browse files
    	
        app.py
    ADDED
    
    | 
         @@ -0,0 +1,141 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import os
         
     | 
| 2 | 
         
            +
            import streamlit as st
         
     | 
| 3 | 
         
            +
            from langchain_community.document_loaders import PDFPlumberLoader
         
     | 
| 4 | 
         
            +
            from langchain_text_splitters import RecursiveCharacterTextSplitter
         
     | 
| 5 | 
         
            +
            from langchain.vectorstores import FAISS
         
     | 
| 6 | 
         
            +
            from langchain.embeddings import HuggingFaceEmbeddings
         
     | 
| 7 | 
         
            +
            from langchain.prompts import ChatPromptTemplate
         
     | 
| 8 | 
         
            +
            from langchain.chains import LLMChain
         
     | 
| 9 | 
         
            +
            from langchain.llms import CTransformers
         
     | 
| 10 | 
         
            +
            import torch
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            # ==== Configuration ====
         
     | 
| 13 | 
         
            +
            pdfs_directory = 'pdfs'
         
     | 
| 14 | 
         
            +
            vectorstores_directory = 'vectorstores_medical'
         
     | 
| 15 | 
         
            +
            os.makedirs(pdfs_directory, exist_ok=True)
         
     | 
| 16 | 
         
            +
            os.makedirs(vectorstores_directory, exist_ok=True)
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            PREDEFINED_BOOKS = [f for f in os.listdir(pdfs_directory) if f.endswith(".pdf")]
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            TEMPLATE = """
         
     | 
| 21 | 
         
            +
            You are a medical assistant with deep clinical knowledge. 
         
     | 
| 22 | 
         
            +
            Use the following retrieved context to answer the question.
         
     | 
| 23 | 
         
            +
            If unsure, say "I don't know." Keep answers accurate, concise, and clear.
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
            Question: {question}
         
     | 
| 26 | 
         
            +
            Context: {context}
         
     | 
| 27 | 
         
            +
            Answer:
         
     | 
| 28 | 
         
            +
            """
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
            # ==== Embedding Model (Medical) ====
         
     | 
| 31 | 
         
            +
            embedding_model = HuggingFaceEmbeddings(
         
     | 
| 32 | 
         
            +
                model_name='pritamdeka/BioBERT-mnli-snli-scinli-scitail-mednli-stsb',
         
     | 
| 33 | 
         
            +
                model_kwargs={"device": "cuda" if torch.cuda.is_available() else "cpu"},
         
     | 
| 34 | 
         
            +
                encode_kwargs={"normalize_embeddings": False}
         
     | 
| 35 | 
         
            +
            )
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
            # ==== LLM (Local Quantized Medical Model) ====
         
     | 
| 38 | 
         
            +
            # llm = CTransformers(
         
     | 
| 39 | 
         
            +
            #     model='TheBloke/MedAlpaca-7B-GGUF',
         
     | 
| 40 | 
         
            +
            #     model_file='medalpaca-7b.Q4_K_M.gguf',
         
     | 
| 41 | 
         
            +
            #     model_type='llama',
         
     | 
| 42 | 
         
            +
            #     config={'max_new_tokens': 512, 'temperature': 0.4}
         
     | 
| 43 | 
         
            +
            # )
         
     | 
| 44 | 
         
            +
            from langchain.llms import HuggingFaceHub
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
            hf_token = "your_huggingface_token"
         
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
            llm = HuggingFaceHub(
         
     | 
| 49 | 
         
            +
                repo_id="epfl-llm/meditron-7b",  # Or BioGPT, GatorTron, ClinicalT5, etc.
         
     | 
| 50 | 
         
            +
                model_kwargs={"temperature": 0.4, "max_new_tokens": 512},
         
     | 
| 51 | 
         
            +
                huggingfacehub_api_token=hf_token
         
     | 
| 52 | 
         
            +
            )
         
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
            # ==== Helpers ====
         
     | 
| 55 | 
         
            +
            def split_text(documents):
         
     | 
| 56 | 
         
            +
                splitter = RecursiveCharacterTextSplitter(
         
     | 
| 57 | 
         
            +
                    chunk_size=1000,
         
     | 
| 58 | 
         
            +
                    chunk_overlap=200,
         
     | 
| 59 | 
         
            +
                    add_start_index=True
         
     | 
| 60 | 
         
            +
                )
         
     | 
| 61 | 
         
            +
                return splitter.split_documents(documents)
         
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
            def get_vectorstore_path(book_filename):
         
     | 
| 64 | 
         
            +
                base_name = os.path.splitext(book_filename)[0]
         
     | 
| 65 | 
         
            +
                return os.path.join(vectorstores_directory, base_name)
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
            def load_or_create_vectorstore(book_filename, documents=None):
         
     | 
| 68 | 
         
            +
                vs_path = get_vectorstore_path(book_filename)
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
                if os.path.exists(os.path.join(vs_path, "index.faiss")):
         
     | 
| 71 | 
         
            +
                    return FAISS.load_local(vs_path, embedding_model, allow_dangerous_deserialization=True)
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
                if documents is None:
         
     | 
| 74 | 
         
            +
                    raise ValueError("Documents required to create vector store.")
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
                with st.spinner(f"β³ Creating vector store for '{book_filename}'..."):
         
     | 
| 77 | 
         
            +
                    os.makedirs(vs_path, exist_ok=True)
         
     | 
| 78 | 
         
            +
                    chunks = split_text(documents)
         
     | 
| 79 | 
         
            +
                    vector_store = FAISS.from_documents(chunks, embedding_model)
         
     | 
| 80 | 
         
            +
                    vector_store.save_local(vs_path)
         
     | 
| 81 | 
         
            +
                    st.success(f"β
 Vector store created for '{book_filename}'.")
         
     | 
| 82 | 
         
            +
                return vector_store
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
            def retrieve_docs(vector_store, query):
         
     | 
| 85 | 
         
            +
                return vector_store.similarity_search(query)
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
            def answer_question(question, documents):
         
     | 
| 88 | 
         
            +
                context = "\n\n".join(doc.page_content for doc in documents)
         
     | 
| 89 | 
         
            +
                prompt = ChatPromptTemplate.from_template(TEMPLATE)
         
     | 
| 90 | 
         
            +
                chain = LLMChain(llm=llm, prompt=prompt)
         
     | 
| 91 | 
         
            +
                return chain.run({"question": question, "context": context})
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
            def upload_pdf(file):
         
     | 
| 94 | 
         
            +
                save_path = os.path.join(pdfs_directory, file.name)
         
     | 
| 95 | 
         
            +
                with open(save_path, "wb") as f:
         
     | 
| 96 | 
         
            +
                    f.write(file.getbuffer())
         
     | 
| 97 | 
         
            +
                return file.name
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
            def load_pdf(file_path):
         
     | 
| 100 | 
         
            +
                loader = PDFPlumberLoader(file_path)
         
     | 
| 101 | 
         
            +
                return loader.load()
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
            # ==== Streamlit App ====
         
     | 
| 104 | 
         
            +
            st.set_page_config(page_title="π©Ί Medical PDF Chat", layout="centered")
         
     | 
| 105 | 
         
            +
            st.title("π Medical Assistant - PDF Q&A")
         
     | 
| 106 | 
         
            +
             
     | 
| 107 | 
         
            +
            with st.sidebar:
         
     | 
| 108 | 
         
            +
                st.header("Select or Upload a Medical Book")
         
     | 
| 109 | 
         
            +
                selected_book = st.selectbox("Choose a PDF", PREDEFINED_BOOKS + ["Upload new book"])
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
                if selected_book == "Upload new book":
         
     | 
| 112 | 
         
            +
                    uploaded_file = st.file_uploader("Upload Medical PDF", type="pdf")
         
     | 
| 113 | 
         
            +
                    if uploaded_file:
         
     | 
| 114 | 
         
            +
                        filename = upload_pdf(uploaded_file)
         
     | 
| 115 | 
         
            +
                        st.success(f"π₯ Uploaded: {filename}")
         
     | 
| 116 | 
         
            +
                        selected_book = filename
         
     | 
| 117 | 
         
            +
             
     | 
| 118 | 
         
            +
            # ==== Main Logic ====
         
     | 
| 119 | 
         
            +
            if selected_book and selected_book != "Upload new book":
         
     | 
| 120 | 
         
            +
                st.info(f"π You selected: {selected_book}")
         
     | 
| 121 | 
         
            +
                file_path = os.path.join(pdfs_directory, selected_book)
         
     | 
| 122 | 
         
            +
                vectorstore_path = get_vectorstore_path(selected_book)
         
     | 
| 123 | 
         
            +
             
     | 
| 124 | 
         
            +
                try:
         
     | 
| 125 | 
         
            +
                    if os.path.exists(os.path.join(vectorstore_path, "index.faiss")):
         
     | 
| 126 | 
         
            +
                        st.success("β
 Vector store already exists. Using cached version.")
         
     | 
| 127 | 
         
            +
                        vector_store = load_or_create_vectorstore(selected_book)
         
     | 
| 128 | 
         
            +
                    else:
         
     | 
| 129 | 
         
            +
                        documents = load_pdf(file_path)
         
     | 
| 130 | 
         
            +
                        vector_store = load_or_create_vectorstore(selected_book, documents)
         
     | 
| 131 | 
         
            +
             
     | 
| 132 | 
         
            +
                    # Chat Input
         
     | 
| 133 | 
         
            +
                    question = st.chat_input("Ask your medical question...")
         
     | 
| 134 | 
         
            +
                    if question:
         
     | 
| 135 | 
         
            +
                        st.chat_message("user").write(question)
         
     | 
| 136 | 
         
            +
                        related_docs = retrieve_docs(vector_store, question)
         
     | 
| 137 | 
         
            +
                        answer = answer_question(question, related_docs)
         
     | 
| 138 | 
         
            +
                        st.chat_message("assistant").write(answer)
         
     | 
| 139 | 
         
            +
             
     | 
| 140 | 
         
            +
                except Exception as e:
         
     | 
| 141 | 
         
            +
                    st.error(f"β Error loading or processing the PDF: {e}")
         
     |