Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,17 +1,16 @@
|
|
| 1 |
import torch
|
| 2 |
-
from transformers import
|
| 3 |
|
| 4 |
-
|
|
|
|
| 5 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 6 |
|
| 7 |
# Modell und Tokenizer laden
|
| 8 |
-
model =
|
| 9 |
model_name,
|
| 10 |
-
device_map="auto", # Modell auf
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
).eval()
|
| 14 |
-
|
| 15 |
|
| 16 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 17 |
|
|
@@ -25,10 +24,12 @@ chat = [
|
|
| 25 |
conversation_str = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=False)
|
| 26 |
|
| 27 |
# Tokenisierung der Eingabe
|
| 28 |
-
input_ids = tokenizer.encode(conversation_str, return_tensors="pt", add_special_tokens=False).to(
|
| 29 |
|
| 30 |
# Inferenz durchführen
|
| 31 |
with torch.no_grad():
|
| 32 |
-
outputs = model(input_ids=input_ids)
|
| 33 |
|
| 34 |
-
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
|
| 4 |
+
# Modell und Tokenizer von Hugging Face laden
|
| 5 |
+
model_name = "Qwen/Qwen2.5-Math-7B-Instruct"
|
| 6 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 7 |
|
| 8 |
# Modell und Tokenizer laden
|
| 9 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 10 |
model_name,
|
| 11 |
+
device_map="auto", # Modell auf verfügbare Geräte verteilen
|
| 12 |
+
trust_remote_code=True
|
| 13 |
+
).to(device).eval()
|
|
|
|
|
|
|
| 14 |
|
| 15 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 16 |
|
|
|
|
| 24 |
conversation_str = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=False)
|
| 25 |
|
| 26 |
# Tokenisierung der Eingabe
|
| 27 |
+
input_ids = tokenizer.encode(conversation_str, return_tensors="pt", add_special_tokens=False).to(device)
|
| 28 |
|
| 29 |
# Inferenz durchführen
|
| 30 |
with torch.no_grad():
|
| 31 |
+
outputs = model.generate(input_ids=input_ids, max_length=512, num_return_sequences=1)
|
| 32 |
|
| 33 |
+
# Ausgabe dekodieren und anzeigen
|
| 34 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 35 |
+
print(response)
|