Spaces:
Running
Running
File size: 111,559 Bytes
7bead62 4a4996a 7bead62 4a4996a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 |
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import os
import time
from PIL import Image
# Only import APIs if available
try:
from google import genai
GENAI_AVAILABLE = True
except ImportError:
GENAI_AVAILABLE = False
try:
from openai import OpenAI
OPENAI_AVAILABLE = True
except ImportError:
OPENAI_AVAILABLE = False
BASE_DIR = os.path.dirname(__file__)
DATA_DIR = os.path.join(BASE_DIR, "data")
# Page configuration
st.set_page_config(
page_title="Translation Comparison Tool",
page_icon="🌐",
layout="wide",
initial_sidebar_state="collapsed"
)
# Custom CSS for Material Design with Tailwind-inspired styling
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
.main-header {
font-family: 'Inter', sans-serif;
font-size: 1.8rem;
font-weight: 600;
color: #1f2937;
margin-bottom: 0.5rem;
letter-spacing: -0.025em;
text-align: center;
}
.sub-header {
font-family: 'Inter', sans-serif;
font-size: 1.1rem;
font-weight: 400;
color: #6b7280;
margin-bottom: 2rem;
line-height: 1.6;
text-align: center;
}
.logo-container {
display: flex;
justify-content: center;
margin-bottom: 2rem;
}
/* Bold and full-width tabs */
.stTabs [data-baseweb="tab-list"] {
gap: 0px;
width: 100%;
}
.stTabs [data-baseweb="tab"] {
font-family: 'Inter', sans-serif !important;
font-size: 1.1rem !important;
font-weight: 600 !important;
padding: 12px 24px !important;
width: 50% !important;
justify-content: center !important;
border-radius: 0 !important;
background-color: #f8f9fa !important;
color: #374151 !important;
border: 1px solid #e5e7eb !important;
margin: 0 !important;
}
.stTabs [data-baseweb="tab"]:hover {
background-color: #f1f3f4 !important;
color: #1f2937 !important;
}
.stTabs [aria-selected="true"] {
background-color: #3b82f6 !important;
color: white !important;
font-weight: 700 !important;
border-color: #3b82f6 !important;
}
.stTabs [data-baseweb="tab-highlight"] {
display: none !important;
}
.stTabs [data-baseweb="tab-border"] {
display: none !important;
}
.tab-header {
font-family: 'Inter', sans-serif;
font-size: 1.5rem;
font-weight: 600;
color: #374151;
margin-bottom: 1rem;
}
.metric-card {
background: #f9fafb;
border: 1px solid #e5e7eb;
border-radius: 0.75rem;
padding: 1.5rem;
margin: 0.5rem 0;
box-shadow: 0 1px 3px 0 rgba(0, 0, 0, 0.1);
}
.metric-title {
font-family: 'Inter', sans-serif;
font-size: 0.875rem;
font-weight: 500;
color: #6b7280;
text-transform: uppercase;
letter-spacing: 0.05em;
margin-bottom: 0.25rem;
}
.metric-value {
font-family: 'Inter', sans-serif;
font-size: 2rem;
font-weight: 700;
color: #1f2937;
line-height: 1;
}
.support-info {
color: #5f6368;
font-size: 12px;
margin-top: 20px;
text-align: center;
font-family: 'Inter', sans-serif;
}
.translate-container {
border: 1px solid #e0e0e0;
border-radius: 8px;
margin: 20px 0;
overflow: hidden;
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
}
.translate-header {
background: #f8f9fa;
border-bottom: 1px solid #e0e0e0;
padding: 12px 16px;
font-family: 'Inter', sans-serif;
font-weight: 500;
font-size: 14px;
color: #5f6368;
display: flex;
align-items: center;
box-sizing: border-box;
}
.language-tabs-container {
border: 1px solid #e0e0e0;
border-radius: 8px;
margin: 20px 0;
overflow: hidden;
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
}
.language-tabs-header {
background: #f8f9fa;
border-bottom: 1px solid #e0e0e0;
height: 45px;
display: flex;
align-items: stretch;
box-sizing: border-box;
padding: 0;
}
.language-tab {
flex: 1;
background: #f8f9fa;
border: none;
border-right: 1px solid #e0e0e0;
padding: 0;
font-family: 'Inter', sans-serif;
font-size: 14px;
font-weight: 500;
cursor: pointer;
transition: all 0.2s ease;
color: #6b7280;
text-align: center;
height: 45px;
display: flex;
align-items: center;
justify-content: center;
box-sizing: border-box;
text-decoration: none;
outline: none;
}
.language-tab:last-child {
border-right: none;
}
.language-tab.active {
background: white;
color: #3b82f6;
border-bottom: 2px solid #3b82f6;
font-weight: 600;
}
.language-tab:hover:not(.active) {
background: #f1f3f4;
color: #374151;
}
.stTextArea textarea {
resize: none !important;
min-height: 350px !important;
max-height: 350px !important;
height: 350px !important;
}
.stTextArea textarea[disabled] {
color: #000000 !important;
opacity: 1 !important;
-webkit-text-fill-color: #000000 !important;
}
/* Make buttons rounded and complete */
.stButton > button {
font-family: 'Inter', sans-serif !important;
font-size: 0.75rem !important;
font-weight: 500 !important;
border-radius: 6px !important; /* Changed from 0 to 6px for rounded corners */
height: 35px !important;
border: 1px solid #d1d5db !important;
margin: 0 2px !important; /* Added small margin between buttons */
padding: 0 12px !important; /* Increased padding for better look */
cursor: pointer !important;
transition: all 0.2s ease !important;
}
.stButton > button[data-testid="baseButton-secondary"] {
background-color: #f3f4f6 !important;
color: #374151 !important;
border-color: #d1d5db !important;
box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05) !important;
}
.stButton > button[data-testid="baseButton-secondary"]:hover {
background-color: #e5e7eb !important;
color: #1f2937 !important;
border-color: #9ca3af !important;
box-shadow: 0 2px 4px 0 rgba(0, 0, 0, 0.1) !important;
transform: translateY(-1px) !important;
}
.stButton > button[data-testid="baseButton-primary"] {
background-color: #3b82f6 !important;
color: #ffffff !important;
font-weight: 600 !important;
border-color: #3b82f6 !important;
box-shadow: 0 2px 4px 0 rgba(59, 130, 246, 0.3) !important;
}
.stButton > button[data-testid="baseButton-primary"]:hover {
background-color: #2563eb !important;
color: #ffffff !important;
border-color: #2563eb !important;
transform: translateY(-1px) !important;
}
/* Remove the border-right rule since we're using margins now */
/* Hide the default Streamlit button styling for tab buttons */
.language-tab-button {
background: none !important;
border: none !important;
padding: 0 !important;
margin: 0 !important;
height: 100% !important;
width: 100% !important;
color: inherit !important;
font-weight: inherit !important;
}
.language-tab-button:hover {
background: none !important;
border: none !important;
}
.language-tab-button:focus {
background: none !important;
border: none !important;
box-shadow: none !important;
}
.score-card {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
border-radius: 12px;
padding: 20px;
text-align: center;
color: white;
margin: 10px 0;
}
.score-value {
font-size: 2.5rem;
font-weight: 700;
margin: 10px 0;
}
.score-label {
font-size: 0.9rem;
opacity: 0.9;
text-transform: uppercase;
letter-spacing: 1px;
}
.comparison-container {
background: #f8fafc;
border: 1px solid #e2e8f0;
border-radius: 12px;
padding: 24px;
margin: 20px 0;
}
.word-diff {
display: inline-block;
padding: 4px 8px;
margin: 2px;
border-radius: 6px;
font-weight: 500;
}
.word-added {
background: #dcfce7;
color: #166534;
border: 1px solid #bbf7d0;
}
.word-removed {
background: #fef2f2;
color: #dc2626;
border: 1px solid #fecaca;
}
.word-common {
background: #f1f5f9;
color: #475569;
border: 1px solid #e2e8f0;
}
.block-container {
padding-top: 1rem;
padding-bottom: 0rem;
}
.main > div {
padding-top: 1rem;
}
/* Hide Streamlit header and footer */
header[data-testid="stHeader"] {
height: 0px;
display: none;
}
.stDeployButton {
display: none;
}
footer {
display: none;
}
#MainMenu {
display: none;
}
</style>
""", unsafe_allow_html=True)
# Model configurations
MODEL_CONFIG = {
'Gemini': {
'languages': ['Afrikaans', 'Northern Sotho', 'isiZulu'],
'models': ['gemini-2.0-flash-exp', 'gemini-1.5-flash', 'gemini-1.5-pro'],
'default_model': 'gemini-2.0-flash-exp'
},
'GPT': {
'languages': ['Afrikaans', 'Northern Sotho', 'isiZulu'],
'models': ['gpt-4', 'gpt-4-turbo', 'gpt-3.5-turbo'],
'default_model': 'gpt-4'
},
'NLLB': {
'languages': ['Northern Sotho', 'isiZulu'], # No Afrikaans model available
'models': {
'Northern Sotho': 'dsfsi/dcs-eng-nso-nllb-1.3B',
'isiZulu': 'dsfsi/dcs-eng-zul-nllb-1.3B'
}
}
}
# Language code mappings
LANGUAGE_CODES = {
'Afrikaans': 'afr',
'Northern Sotho': 'nso',
'isiZulu': 'isizulu'
}
# Load logo
def load_logo():
"""Load logo with error handling"""
try:
if os.path.exists(f"{BASE_DIR}/logo.png"):
return Image.open(f"{BASE_DIR}/logo.png")
except Exception as e:
st.warning(f"Could not load logo: {str(e)}")
return None
# Load and cache data
@st.cache_data
def load_translation_data():
"""Load sample translation data"""
try:
sample_data = {
'english': ['Hello world', 'How are you?', 'Good morning', 'Thank you', 'Welcome', 'Goodbye'],
'afr': ['Hallo wêreld', 'Hoe gaan dit?', 'Goeie môre', 'Dankie', 'Welkom', 'Totsiens'],
'afr_rev': ['Hallo wêreld', 'Hoe gaan dit met jou?', 'Goeie môre', 'Baie dankie', 'Welkom', 'Totsiens'],
'nso': ['Dumela lefase', 'O kae?', 'Thobela', 'Ke a leboga', 'O amogetšwe', 'Šala gabotse'],
'nso_rev': ['Dumela lefase', 'O phela bjang?', 'Thobela', 'Ke a leboga kudu', 'O amogetšwe', 'Šala gabotse'],
'isizulu': ['Sawubona mhlaba', 'Unjani?', 'Sawubona', 'Ngiyabonga', 'Wamukelekile', 'Sala kahle'],
'isizulu_rev': ['Sawubona mhlaba', 'Unjani wena?', 'Sawubona', 'Ngiyabonga kakhulu', 'Wamukelekile', 'Sala kahle'],
'nso_mt_nllb': ['Dumela lefase', 'O kae?', 'Thobela', 'Ke a leboga', 'O amogetšwe', 'Šala gabotse'],
'isizulu_mt_nllb': ['Sawubona mhlaba', 'Unjani?', 'Sawubona', 'Ngiyabonga', 'Wamukelekile', 'Sala kahle'],
'afr_mt_gpt': ['Hallo wêreld', 'Hoe gaan dit?', 'Goeie môre', 'Dankie', 'Welkom', 'Totsiens'],
'nso_mt_gpt': ['Dumela lefase', 'O kae?', 'Thobela', 'Ke a leboga', 'O amogetšwe', 'Šala gabotse'],
'isizulu_mt_gpt': ['Sawubona mhlaba', 'Unjani?', 'Sawubona', 'Ngiyabonga', 'Wamukelekile', 'Sala kahle'],
'afr_mt_gemini': ['Hallo wêreld', 'Hoe is dit?', 'Goeie môre', 'Baie dankie', 'Welkom', 'Totsiens'],
'nso_mt_gemini': ['Dumela lefase', 'O phela bjang?', 'Thobela', 'Ke a leboga kudu', 'O amogetšwe', 'Šala gabotse'],
'isizulu_mt_gemini': ['Sawubona mhlaba', 'Unjani wena?', 'Sawubona', 'Ngiyabonga kakhulu', 'Wamukelekile', 'Sala kahle']
}
return pd.DataFrame(sample_data)
except Exception as e:
st.error(f"Error loading data: {str(e)}")
return pd.DataFrame({'english': ['Sample text'], 'error': ['Data loading failed']})
def translate_with_gemini(text, target_language, model_name="gemini-2.0-flash-exp", client=None):
"""Translate text using Gemini API"""
try:
if not GENAI_AVAILABLE:
return "❌ Gemini library not installed"
if not client:
return "❌ Gemini API not configured. Please check your GEMINI_API_KEY."
lang_map = {
'Afrikaans': 'Afrikaans',
'Northern Sotho': 'Northern Sotho (Sepedi)',
'isiZulu': 'isiZulu'
}
prompt = f"Translate the following English text to {lang_map.get(target_language, target_language)}: '{text}'. Provide only the translation without any explanations."
response = client.models.generate_content(
model=model_name, contents=prompt
)
return response.text.strip()
except Exception as e:
return f"❌ Error: {str(e)}"
def translate_with_openai(text, target_language, model_name="gpt-4o", client=None):
"""Translate text using OpenAI API with Chat Completions"""
try:
if not OPENAI_AVAILABLE:
return "❌ OpenAI library not installed"
if not client:
return "❌ OpenAI API not configured. Please check your OPENAI_API_KEY."
lang_map = {
'Afrikaans': 'Afrikaans',
'Northern Sotho': 'Northern Sotho (Sepedi)',
'isiZulu': 'isiZulu'
}
# Use Chat Completions API (supported indefinitely)
response = client.chat.completions.create(
model=model_name,
messages=[
{"role": "system", "content": "You are a professional translator. Provide only the translation without any explanations."},
{"role": "user", "content": f"Translate the following text to {lang_map.get(target_language, target_language)}: {text}"}
],
max_tokens=1000,
temperature=0.3 # Lower temperature for more consistent translations
)
return response.choices[0].message.content.strip()
except Exception as e:
return f"❌ Error: {str(e)}"
@st.cache_resource
def initialize_apis():
"""Initialize API clients with proper error handling, supporting both local and HF Spaces."""
genai_client = None
openai_client = None
def get_secret(name):
"""Fetch secret from env first (Docker Spaces), then Streamlit secrets."""
return (
os.environ.get(name)
or (st.secrets.get(name) if hasattr(st, "secrets") and name in st.secrets else None)
)
try:
# Gemini API
if GENAI_AVAILABLE:
try:
api_key = get_secret("GEMINI_API_KEY")
if api_key:
genai_client = genai.Client(api_key=api_key)
else:
st.warning("⚠️ Gemini API key not found")
except Exception as e:
st.error(f"❌ Gemini API error: {str(e)}")
# OpenAI API
if OPENAI_AVAILABLE:
try:
api_key = get_secret("OPENAI_API_KEY")
if api_key:
try:
# Try new OpenAI API client
openai_client = OpenAI(api_key=api_key)
except TypeError:
import openai
openai.api_key = api_key
openai_client = openai
else:
st.warning("⚠️ OpenAI API key not found")
except Exception as e:
st.error(f"❌ OpenAI API error: {str(e)}")
except Exception as e:
st.error(f"❌ API initialization error: {str(e)}")
return genai_client, openai_client
def translate_with_nllb(text, target_language):
"""Translate text using unified NLLB API"""
try:
import requests
# Single ngrok URL for unified API
API_URL = "https://4c2faecc052a.ngrok-free.app"
# Map Streamlit language names to API format
lang_mapping = {
'Northern Sotho': 'nso',
'isiZulu': 'zul'
}
api_lang = lang_mapping.get(target_language, target_language.lower())
response = requests.post(
f"{API_URL}/translate_simple",
params={
"text": text,
"target_language": api_lang
},
timeout=30
)
if response.status_code == 200:
result = response.json()
return result.get(api_lang, '❌ Translation not found')
else:
return f"❌ API Error: {response.status_code}"
except Exception as e:
return f"❌ Error: {str(e)}"
def create_language_tabs(available_languages, current_language, key_suffix=""):
"""Create language tabs with proper styling"""
tabs_html = '<div class="language-tabs-container"><div class="language-tabs-header">'
for lang in available_languages:
active_class = "active" if lang == current_language else ""
tabs_html += f'''
<div class="language-tab {active_class}" onclick="selectLanguage('{lang}', '{key_suffix}')">
{lang}
</div>
'''
tabs_html += '</div></div>'
# Add JavaScript for tab functionality
script = f'''
<script>
function selectLanguage(lang, suffix) {{
// This would normally update the session state, but since we can't do that from JavaScript,
// we'll use the button approach below instead
}}
</script>
'''
return tabs_html + script
def main():
"""Main application function"""
# Load and display logo and title side by side
logo = load_logo()
# Initialize session state FIRST to avoid refreshes
if 'target_language' not in st.session_state:
st.session_state.target_language = 'Afrikaans'
if 'translation_result' not in st.session_state:
st.session_state.translation_result = ""
if 'current_page' not in st.session_state:
st.session_state.current_page = 1
if 'initialized' not in st.session_state:
st.session_state.initialized = True
col1, col2, col3 = st.columns([1, 2, 1])
with col2:
if logo:
# Convert logo to base64 for HTML embedding
import base64
from io import BytesIO
buffered = BytesIO()
logo.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
st.markdown(f'''
<div style="display: flex; align-items: center; justify-content: center; gap: 0px; margin-bottom: 1rem;">
<img src="data:image/png;base64,{img_str}" width="180">
<h1 class="main-header" style="margin: 20px;">UP Translate</h1>
</div>
''', unsafe_allow_html=True)
else:
st.markdown('<h1 class="main-header" style="margin-bottom: 1rem;">UP Translate</h1>', unsafe_allow_html=True)
# Initialize APIs
genai_client, openai_client = initialize_apis()
# Initialize session state
if 'target_language' not in st.session_state:
st.session_state.target_language = 'Afrikaans'
if 'translation_result' not in st.session_state:
st.session_state.translation_result = ""
# Create tabs
tab1, tab2 = st.tabs(["🤖 Live Translations", "📊 Existing Translations"])
with tab1:
# st.markdown('<h2 class="tab-header">Live Translation</h2>', unsafe_allow_html=True)
# Create simplified model options
model_options = []
model_mapping = {}
# Add Gemini models
for model in MODEL_CONFIG['Gemini']['models']:
display_name = f"Gemini - {model}"
model_options.append(display_name)
model_mapping[display_name] = ('Gemini', None, model)
# Add GPT models
for model in MODEL_CONFIG['GPT']['models']:
display_name = f"GPT - {model}"
model_options.append(display_name)
model_mapping[display_name] = ('GPT', None, model)
# Add single NLLB option
model_options.append("NLLB - Specialized Models")
model_mapping["NLLB - Specialized Models"] = ('NLLB', None, None)
# Model selection with inline label
label_col, dropdown_col = st.columns([2, 10])
with label_col:
st.markdown('<div style="margin-top: 8px; font-weight: 500;">Select Model:</div>', unsafe_allow_html=True)
with dropdown_col:
selected_model_option = st.selectbox(
"Select Model:",
model_options,
index=0,
key="model_selection_dropdown",
label_visibility="collapsed"
)
selected_provider, _, selected_model = model_mapping[selected_model_option]
# Translation interface
col_left, col_center, col_right = st.columns([5, 1, 5])
# Left side - English Input
with col_left:
st.markdown('<div class="translate-container">', unsafe_allow_html=True)
st.markdown('<div class="translate-header">English</div>', unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
input_text = st.text_area(
"Input",
placeholder="Input text here",
height=350,
key="input_text_live",
label_visibility="collapsed"
)
# Center - Translate Button
with col_center:
# Add spacing to align button with text areas
st.markdown('<div style="height: 150px;"></div>', unsafe_allow_html=True)
translate_clicked = st.button(
"Translate",
key="translate_btn_live",
help="Translate text",
type="primary",
use_container_width=True
)
# Right side - Translation Output
with col_right:
# Determine available languages based on selected provider
if selected_provider == 'NLLB':
available_languages = MODEL_CONFIG['NLLB']['languages']
else:
available_languages = ['Afrikaans', 'Northern Sotho', 'isiZulu']
# Set default language to first available if current selection not available
if st.session_state.target_language not in available_languages:
st.session_state.target_language = available_languages[0]
# Create container with custom styling
st.markdown('<div class="translate-container">', unsafe_allow_html=True)
# Language selection buttons
lang_cols = st.columns(len(available_languages))
for i, lang in enumerate(available_languages):
with lang_cols[i]:
button_type = "primary" if lang == st.session_state.target_language else "secondary"
if st.button(
lang,
key=f"lang_btn_{lang}_live",
type=button_type,
use_container_width=True
):
if st.session_state.target_language != lang: # Only update if different
st.session_state.target_language = lang
st.session_state.translation_result = "" # Clear previous result
st.rerun()
# Translation logic
if translate_clicked and input_text:
with st.spinner("Translating..."):
target_lang = st.session_state.target_language
if selected_provider == 'Gemini':
result = translate_with_gemini(input_text, target_lang, selected_model, genai_client)
elif selected_provider == 'GPT':
result = translate_with_openai(input_text, target_lang, selected_model, openai_client)
elif selected_provider == 'NLLB':
result = translate_with_nllb(input_text, target_lang)
st.session_state.translation_result = result
# Translation output area with proper labeling
st.text_area(
f"Translation ({st.session_state.target_language})", # Dynamic label
value=st.session_state.translation_result,
placeholder="Translation will appear here",
height=350,
key="translation_output_live_fixed", # Changed key to avoid conflicts
disabled=True,
label_visibility="collapsed"
)
# Support information
st.markdown("""
<div class="support-info">
<strong>Available Models:</strong><br>
🔮 <strong>Gemini:</strong> All languages (gemini-2.0-flash-exp, gemini-1.5-flash, gemini-1.5-pro)<br>
🧠 <strong>GPT:</strong> All languages (gpt-4, gpt-4-turbo, gpt-3.5-turbo)<br>
🤗 <strong>NLLB:</strong> Northern Sotho, isiZulu only (specialized models)
</div>
""", unsafe_allow_html=True)
with tab2:
# Load data from base directory automatically
@st.cache_data
def load_analysis_data():
"""Load all analysis data from base directory"""
df_translations = None
df_bleu = None
df_chrf = None
df_comet = None
try:
# Try to load translations data
if os.path.exists(f"{DATA_DIR}/translations.tsv"):
df_translations = pd.read_csv(f"{DATA_DIR}/translations.tsv", sep="\t")
# Convert new CSV format to expected format for analysis
# New format: id,english,afr_human,afr_revised,nso_human,nso_revised,zul_human,zul_revised,afr_gemini,afr_gpt,nso_gemini,nso_gpt,nso_nllb,zul_gemini,zul_gpt,zul_nllb
# Expected format: english, afr_human, afr_revised, nso_human, nso_revised, isizulu_human, isizulu_revised, etc.
# Rename zul columns to isizulu for backward compatibility with analysis code
column_mapping = {
'zul_human': 'isizulu_human',
'zul_revised': 'isizulu_revised',
'zul_gemini': 'isizulu_mt_gemini',
'zul_gpt': 'isizulu_mt_gpt',
'zul_nllb': 'isizulu_mt_nllb',
'afr_gemini': 'afr_mt_gemini',
'afr_gpt': 'afr_mt_gpt',
'nso_gemini': 'nso_mt_gemini',
'nso_gpt': 'nso_mt_gpt',
'nso_nllb': 'nso_mt_nllb'
}
df_translations = df_translations.rename(columns=column_mapping)
elif os.path.exists(f"{DATA_DIR}/translation_data.csv"):
df_translations = pd.read_csv(f"{DATA_DIR}/translation_data.csv")
else:
print("No translation data found, using sample data")
df_translations = load_translation_data() # Fallback to sample data
# Try to load BLEU scores
if os.path.exists(f"{DATA_DIR}/bleu_scores.csv"):
df_bleu = pd.read_csv(f"{DATA_DIR}/bleu_scores.csv")
# Convert zul references to isizulu for compatibility
df_bleu['comparison_pair'] = df_bleu['comparison_pair'].str.replace('zul_', 'isizulu_')
df_bleu['language'] = df_bleu['language'].replace('isiZulu', 'isiZulu') # Already correct
else:
# Sample BLEU data (using isizulu for compatibility with existing analysis code)
df_bleu = pd.DataFrame({
'comparison_pair': ['afr_human_vs_afr_gemini', 'afr_human_vs_afr_gpt', 'afr_human_vs_afr_revised', 'nso_human_vs_nso_gemini', 'nso_human_vs_nso_gpt', 'nso_human_vs_nso_revised', 'nso_human_vs_nso_nllb', 'isizulu_human_vs_isizulu_gemini', 'isizulu_human_vs_isizulu_gpt', 'isizulu_human_vs_isizulu_revised', 'isizulu_human_vs_isizulu_nllb'],
'bleu_score': [0.78, 0.72, 0.89, 0.65, 0.68, 0.85, 0.71, 0.71, 0.69, 0.87, 0.73],
'language': ['Afrikaans', 'Afrikaans', 'Afrikaans', 'Northern Sotho', 'Northern Sotho', 'Northern Sotho', 'Northern Sotho', 'isiZulu', 'isiZulu', 'isiZulu', 'isiZulu']
})
# Try to load COMET scores
if os.path.exists(f"{DATA_DIR}/comet_scores.csv"):
df_comet = pd.read_csv(f"{DATA_DIR}/comet_scores.csv")
else:
# Sample COMET data
df_comet = pd.DataFrame({
'comparison_pair': ['afr_human_vs_afr_gemini', 'afr_human_vs_afr_gpt', 'afr_human_vs_afr_revised', 'nso_human_vs_nso_gemini', 'nso_human_vs_nso_gpt', 'nso_human_vs_nso_revised', 'isizulu_human_vs_isizulu_gemini', 'isizulu_human_vs_isizulu_gpt', 'isizulu_human_vs_isizulu_revised'],
'comet_score': [0.82, 0.79, 0.92, 0.71, 0.74, 0.88, 0.76, 0.73, 0.90],
'language': ['Afrikaans', 'Afrikaans', 'Afrikaans', 'Northern Sotho', 'Northern Sotho', 'Northern Sotho', 'isiZulu', 'isiZulu', 'isiZulu']
})
# Try to load CHRF scores
if os.path.exists(f"{DATA_DIR}/chrf_scores.csv"):
df_chrf = pd.read_csv(f"{DATA_DIR}/chrf_scores.csv")
else:
# Sample CHRF data
df_chrf = pd.DataFrame({
'comparison_pair': ['afr_human_vs_afr_gemini', 'afr_human_vs_afr_gpt', 'afr_human_vs_afr_revised', 'nso_human_vs_nso_gemini', 'nso_human_vs_nso_gpt', 'nso_human_vs_nso_revised', 'isizulu_human_vs_isizulu_gemini', 'isizulu_human_vs_isizulu_gpt', 'isizulu_human_vs_isizulu_revised'],
'chrf_score': [0.75, 0.70, 0.88, 0.60, 0.65, 0.80, 0.68, 0.66, 0.85],
'language': ['Afrikaans', 'Afrikaans', 'Afrikaans', 'Northern Sotho', 'Northern Sotho', 'Northern Sotho', 'isiZulu', 'isiZulu', 'isiZulu']
})
return df_translations, df_bleu, df_comet, df_chrf
except Exception as e:
st.error(f"Error loading data: {str(e)}")
return None, None, None, None
# Load all data
df_translations, df_bleu, df_comet, df_chrf = load_analysis_data()
if df_translations is not None:
# Language selection in columns
lang_col1, lang_col2 = st.columns([2, 10])
with lang_col1:
st.markdown('<div style="margin-top: 8px; font-weight: 500;">Select Language:</div>', unsafe_allow_html=True)
with lang_col2:
languages = ['Afrikaans', 'Northern Sotho', 'isiZulu']
selected_lang = st.selectbox(
"Select Language for Analysis:",
languages,
key="global_lang_select",
label_visibility="collapsed"
)
# Get language code
lang_codes = {'Afrikaans': 'afr', 'Northern Sotho': 'nso', 'isiZulu': 'isizulu'}
code = lang_codes[selected_lang]
# Create analysis tabs
analysis_tab1, analysis_tab2, analysis_tab3, analysis_tab4 = st.tabs(["Sample Translations", "📊 Quality Metrics", "🔄 Revision Analysis", "🔍 Word Comparison"])
with analysis_tab1:
# Translation Samples Tab
st.markdown("""
<div style="margin: 20px 0;">
<h4 style="font-family: 'Inter', sans-serif; font-size: 1.2rem; font-weight: 600; color: #374151; margin: 0 0 16px 0;">
📝 Translation Samples for {selected_lang}
</h4>
</div>
""".format(selected_lang=selected_lang), unsafe_allow_html=True)
# Use the global language selection
samples_code = code
# Show sample translations for the selected language
display_cols = ['english'] + [col for col in df_translations.columns if col.startswith(samples_code)]
if display_cols and len(display_cols) > 1: # Need at least english + 1 translation column
# Control panel
control_col1, control_col2, control_col3, control_col4 = st.columns([1, 7, 1, 2])
with control_col1:
st.markdown('<div style="margin-top: 8px; font-weight: 500;">Samples per page:</div>', unsafe_allow_html=True)
with control_col2:
page_size = st.selectbox(
"Samples per page:",
[10, 25, 50, 100],
index=0,
key="page_size_select",
label_visibility="collapsed"
)
# Initialize session state for pagination
if 'current_page' not in st.session_state:
st.session_state.current_page = 1
# Filter data and calculate pagination
available_data = df_translations[display_cols].dropna(subset=[col for col in display_cols if col != 'english'], how='all')
total_samples = len(available_data)
total_pages = max(1, (total_samples + page_size - 1) // page_size) # Ceiling division
# Ensure current page is valid
if st.session_state.current_page > total_pages:
st.session_state.current_page = 1
# Calculate start and end indices
start_idx = (st.session_state.current_page - 1) * page_size
end_idx = min(start_idx + page_size, total_samples)
# Get current page data
current_page_data = available_data.iloc[start_idx:end_idx]
with control_col3:
st.markdown('<div style="margin-top: 8px; font-weight: 500;">Page:</div>', unsafe_allow_html=True)
with control_col4:
# Page navigation
nav_col1, nav_col2, nav_col3, nav_col4, nav_col5 = st.columns([1, 1, 2, 1, 1])
with nav_col1:
if st.button("⏮️", key="first_page", help="First page", disabled=(st.session_state.current_page == 1)):
st.session_state.current_page = 1
st.rerun()
with nav_col2:
if st.button("◀️", key="prev_page", help="Previous page", disabled=(st.session_state.current_page == 1)):
st.session_state.current_page -= 1
st.rerun()
with nav_col3:
st.markdown(f'<div style="text-align: center; margin-top: 8px; font-weight: 500;">{st.session_state.current_page} / {total_pages}</div>', unsafe_allow_html=True)
with nav_col4:
if st.button("▶️", key="next_page", help="Next page", disabled=(st.session_state.current_page == total_pages)):
st.session_state.current_page += 1
st.rerun()
with nav_col5:
if st.button("⏭️", key="last_page", help="Last page", disabled=(st.session_state.current_page == total_pages)):
st.session_state.current_page = total_pages
st.rerun()
# Statistics cards
stats_col1, stats_col2, stats_col3, stats_col4 = st.columns(4)
with stats_col1:
st.markdown(f"""
<div class="metric-card">
<div class="metric-title">Showing</div>
<div class="metric-value">{len(current_page_data)}</div>
</div>
""", unsafe_allow_html=True)
with stats_col2:
available_systems = len([col for col in display_cols if col != 'english'])
st.markdown(f"""
<div class="metric-card">
<div class="metric-title">Translation Systems</div>
<div class="metric-value">{available_systems}</div>
</div>
""", unsafe_allow_html=True)
with stats_col3:
st.markdown(f"""
<div class="metric-card">
<div class="metric-title">Total Available</div>
<div class="metric-value">{total_samples}</div>
</div>
""", unsafe_allow_html=True)
with stats_col4:
st.markdown(f"""
<div class="metric-card">
<div class="metric-title">Current Page</div>
<div class="metric-value">{st.session_state.current_page}/{total_pages}</div>
</div>
""", unsafe_allow_html=True)
# Display the samples table
st.markdown("### Translation Examples")
if len(current_page_data) > 0:
# Create a styled dataframe with better column names
display_df = current_page_data.copy()
# Rename columns for better display
column_rename = {
'english': 'English (Source)',
}
# Add human-readable names for translation columns
for col in display_df.columns:
if col.startswith(samples_code):
if '_human' in col:
column_rename[col] = f'{selected_lang} (Human)'
elif '_revised' in col:
column_rename[col] = f'{selected_lang} (Revised)'
elif '_mt_gemini' in col or '_gemini' in col:
column_rename[col] = f'{selected_lang} (Gemini)'
elif '_mt_gpt' in col or '_gpt' in col:
column_rename[col] = f'{selected_lang} (GPT)'
elif '_mt_nllb' in col or '_nllb' in col:
column_rename[col] = f'{selected_lang} (NLLB)'
else:
# Generic fallback
clean_name = col.replace(f'{samples_code}_', '').replace('_', ' ').title()
column_rename[col] = f'{selected_lang} ({clean_name})'
display_df = display_df.rename(columns=column_rename)
# Add row numbers based on actual position in full dataset
display_df.index = range(start_idx + 1, end_idx + 1)
display_df.index.name = 'Sample #'
st.dataframe(
display_df,
use_container_width=True,
height=min(600, 50 + len(display_df) * 35), # Dynamic height based on content
column_config={
col: st.column_config.TextColumn(col, width="medium")
for col in display_df.columns
}
)
# Page info summary
st.markdown(f"""
<div style="margin-top: 16px; padding: 12px; background: #f8fafc; border-radius: 6px; text-align: center; color: #6b7280; font-size: 0.9rem;">
📄 Showing samples {start_idx + 1} to {end_idx} of {total_samples} total samples • Page {st.session_state.current_page} of {total_pages}
</div>
""", unsafe_allow_html=True)
# Quick jump to page
if total_pages > 5: # Only show quick jump for datasets with many pages
st.markdown("### Quick Navigation")
jump_col1, jump_col2, jump_col3 = st.columns([1, 2, 1])
with jump_col2:
target_page = st.number_input(
f"Jump to page (1-{total_pages}):",
min_value=1,
max_value=total_pages,
value=st.session_state.current_page,
key="page_jump"
)
if st.button("🔗 Go to Page", use_container_width=True):
if target_page != st.session_state.current_page:
st.session_state.current_page = target_page
st.rerun()
else:
st.warning("⚠️ No translation samples found for the current page.")
else:
st.warning(f"⚠️ No translation data available for {selected_lang}. Expected columns starting with '{samples_code}_'")
# Debug information
available_columns = [col for col in df_translations.columns if col.startswith(samples_code)]
if available_columns:
st.info(f"🔍 Found columns: {', '.join(available_columns)}")
else:
all_lang_columns = [col for col in df_translations.columns if any(col.startswith(prefix) for prefix in ['afr_', 'nso_', 'isizulu_'])]
if all_lang_columns:
st.info(f"💡 Available language columns: {', '.join(all_lang_columns[:10])}{'...' if len(all_lang_columns) > 10 else ''}")
with analysis_tab2:
st.markdown("""
<div style="margin: 20px 0;">
<h4 style="font-family: 'Inter', sans-serif; font-size: 1.2rem; font-weight: 600; color: #374151; margin: 0 0 16px 0;">
📈 Quality Metrics for {selected_lang}
</h4>
</div>
""".format(selected_lang=selected_lang), unsafe_allow_html=True)
# Get language code
lang_codes = {'Afrikaans': 'afr', 'Northern Sotho': 'nso', 'isiZulu': 'isizulu'}
code = lang_codes[selected_lang]
# Score visualizations
if df_bleu is not None and df_chrf is not None and df_comet is not None:
# Filter scores for selected language
lang_bleu = df_bleu[df_bleu['language'] == selected_lang] if 'language' in df_bleu.columns else df_bleu
lang_chrf = df_chrf[df_chrf['language'] == selected_lang] if 'language' in df_chrf.columns else df_chrf
lang_comet = df_comet[df_comet['language'] == selected_lang] if 'language' in df_comet.columns else df_comet
# Check if we have domain-level data
has_domain_data = ('domain' in lang_bleu.columns and 'domain' in lang_chrf.columns and
'domain' in lang_comet.columns and
len(lang_bleu[lang_bleu['domain'] != 'Overall']) > 0)
if has_domain_data:
# Add domain filter
available_domains = sorted(lang_bleu['domain'].unique())
domain_options = ['Overall'] + [d for d in available_domains if d != 'Overall']
selected_domain = st.selectbox(
"📍 Select Domain for Analysis:",
domain_options,
key=f"domain_selector_{selected_lang}"
)
# Filter data based on selected domain
if selected_domain == 'Overall':
display_bleu = lang_bleu[lang_bleu['domain'] == 'Overall']
display_chrf = lang_chrf[lang_chrf['domain'] == 'Overall']
display_comet = lang_comet[lang_comet['domain'] == 'Overall']
chart_title_suffix = " - Overall"
else:
display_bleu = lang_bleu[lang_bleu['domain'] == selected_domain]
display_chrf = lang_chrf[lang_chrf['domain'] == selected_domain]
display_comet = lang_comet[lang_comet['domain'] == selected_domain]
chart_title_suffix = f" - {selected_domain}"
else:
# Use all data if no domain column
display_bleu = lang_bleu
display_chrf = lang_chrf
display_comet = lang_comet
chart_title_suffix = ""
# Create score charts
if len(display_bleu) > 0 and len(display_chrf) > 0 and len(display_comet) > 0:
chart_col1, chart_col2, chart_col3 = st.columns(3)
with chart_col1:
# chrF Score Chart
fig_chrf = px.bar(
display_chrf,
x='comparison_pair',
y='chrf_score',
title=f'chrF Scores - {selected_lang}{chart_title_suffix}',
color='chrf_score',
color_continuous_scale='oranges'
)
fig_chrf.update_layout(
xaxis_title="Translation Pairs",
yaxis_title="chrF Score",
xaxis_tickangle=-45,
height=400,
font=dict(family="Inter", size=12)
)
st.plotly_chart(fig_chrf, use_container_width=True)
with chart_col2:
# BLEU Score Chart
fig_bleu = px.bar(
display_bleu,
x='comparison_pair',
y='bleu_score',
title=f'BLEU Scores - {selected_lang}{chart_title_suffix}',
color='bleu_score',
color_continuous_scale='blues'
)
fig_bleu.update_layout(
xaxis_title="Translation Pairs",
yaxis_title="BLEU Score",
xaxis_tickangle=-45,
height=400,
font=dict(family="Inter", size=12)
)
st.plotly_chart(fig_bleu, use_container_width=True)
with chart_col3:
# COMET Score Chart
fig_comet = px.bar(
display_comet,
x='comparison_pair',
y='comet_score',
title=f'COMET Scores - {selected_lang}{chart_title_suffix}',
color='comet_score',
color_continuous_scale='greens'
)
fig_comet.update_layout(
xaxis_title="Translation Pairs",
yaxis_title="COMET Score",
xaxis_tickangle=-45,
height=400,
font=dict(family="Inter", size=12)
)
st.plotly_chart(fig_comet, use_container_width=True)
# PRIMARY SPIDER CHART - Domain Performance when available, Model Performance otherwise
if has_domain_data:
st.markdown(f"""
<h4 style="font-family: 'Inter', sans-serif; font-weight: 600; color: #374151; margin: 20px 0 16px 0;">
🕸️ Domain Performance Spider Charts - {selected_lang}
</h4>
""", unsafe_allow_html=True)
# Filter out "Overall" so only domain-level values are shown
domain_bleu = lang_bleu[lang_bleu['domain'] != 'Overall']
domain_chrf = lang_chrf[lang_chrf['domain'] != 'Overall']
domain_comet = lang_comet[lang_comet['domain'] != 'Overall']
# Pivot all metrics
pivot_bleu = domain_bleu.pivot(
index='comparison_pair',
columns='domain',
values='bleu_score'
).fillna(0)
pivot_chrf = domain_chrf.pivot(
index='comparison_pair',
columns='domain',
values='chrf_score'
).fillna(0)
pivot_comet = domain_comet.pivot(
index='comparison_pair',
columns='domain',
values='comet_score'
).fillna(0)
# Ensure domains are in the same order for all metrics
domains = sorted(set(pivot_bleu.columns) | set(pivot_chrf.columns) | set(pivot_comet.columns))
pivot_bleu = pivot_bleu.reindex(columns=domains, fill_value=0)
pivot_chrf = pivot_chrf.reindex(columns=domains, fill_value=0)
pivot_comet = pivot_comet.reindex(columns=domains, fill_value=0)
# Define distinct colors with reduced opacity
distinct_colors = [
'rgba(255, 99, 132, 0.4)', # Red
'rgba(54, 162, 235, 0.4)', # Blue
'rgba(99, 255, 132, 0.4)', # Green
'rgba(75, 192, 192, 0.4)', # Teal
'rgba(255, 205, 86, 0.4)', # Yellow
'rgba(153, 102, 255, 0.4)', # Purple
'rgba(255, 159, 64, 0.4)', # Orange
'rgba(199, 199, 199, 0.4)', # Grey
'rgba(83, 102, 255, 0.4)', # Indigo
'rgba(255, 99, 255, 0.4)', # Magenta
]
# Border colors (same colors but full opacity for borders)
border_colors = [
'rgba(255, 99, 132, 1.0)', # Red
'rgba(54, 162, 235, 1.0)', # Blue
'rgba(99, 255, 132, 1.0)', # Green
'rgba(75, 192, 192, 1.0)', # Teal
'rgba(255, 205, 86, 1.0)', # Yellow
'rgba(153, 102, 255, 1.0)', # Purple
'rgba(255, 159, 64, 1.0)', # Orange
'rgba(199, 199, 199, 1.0)', # Grey
'rgba(83, 102, 255, 1.0)', # Indigo
'rgba(255, 99, 255, 1.0)', # Magenta
]
# Layout for three side-by-side spider charts
spider_col1, spider_col2, spider_col3 = st.columns(3)
# ---------------- CHRF SPIDER ----------------
with spider_col1:
fig_chrf_spider = go.Figure()
for i, (model_name, row) in enumerate(pivot_chrf.iterrows()):
color_idx = i % len(distinct_colors)
fig_chrf_spider.add_trace(go.Scatterpolar(
r=row.tolist() + [row.tolist()[0]], # close loop
theta=domains + [domains[0]],
fill='toself',
name=model_name.split('_')[-1].upper(),
fillcolor=distinct_colors[color_idx],
line=dict(color=border_colors[color_idx], width=2),
opacity=0.7,
showlegend=False # Hide legend on first chart
))
fig_chrf_spider.update_layout(
polar=dict(radialaxis=dict(visible=True, range=[0, 1])),
showlegend=False,
title=dict(text=f"Domain Performance (chrF) - {selected_lang}"),
height=450
)
st.plotly_chart(fig_chrf_spider, use_container_width=True)
# ---------------- BLEU SPIDER ----------------
with spider_col2:
fig_bleu_spider = go.Figure()
for i, (model_name, row) in enumerate(pivot_bleu.iterrows()):
color_idx = i % len(distinct_colors)
fig_bleu_spider.add_trace(go.Scatterpolar(
r=row.tolist() + [row.tolist()[0]], # close loop
theta=domains + [domains[0]],
fill='toself',
name=model_name.split('_')[-1].upper(),
fillcolor=distinct_colors[color_idx],
line=dict(color=border_colors[color_idx], width=2),
opacity=0.7,
showlegend=True # Show legend on middle chart
))
fig_bleu_spider.update_layout(
polar=dict(radialaxis=dict(visible=True, range=[0, 1])),
showlegend=True,
title=dict(text=f"Domain Performance (BLEU) - {selected_lang}"),
height=450,
legend=dict(
orientation="h",
yanchor="bottom",
y=-0.3,
xanchor="center",
x=0.5
)
)
st.plotly_chart(fig_bleu_spider, use_container_width=True)
# ---------------- COMET SPIDER ----------------
with spider_col3:
fig_comet_spider = go.Figure()
for i, (model_name, row) in enumerate(pivot_comet.iterrows()):
color_idx = i % len(distinct_colors)
fig_comet_spider.add_trace(go.Scatterpolar(
r=row.tolist() + [row.tolist()[0]], # close loop
theta=domains + [domains[0]],
fill='toself',
name=model_name.split('_')[-1].upper(),
fillcolor=distinct_colors[color_idx],
line=dict(color=border_colors[color_idx], width=2),
opacity=0.7,
showlegend=False # Hide legend on last chart
))
fig_comet_spider.update_layout(
polar=dict(radialaxis=dict(visible=True, range=[0, 1])),
showlegend=False,
title=dict(text=f"Domain Performance (COMET) - {selected_lang}"),
height=450
)
st.plotly_chart(fig_comet_spider, use_container_width=True)
# # Overall Performance Summary
# st.markdown("""
# <h4 style="font-family: 'Inter', sans-serif; font-weight: 600; color: #374151; margin: 30px 0 16px 0;">
# 📋 Overall Performance Summary
# </h4>
# """, unsafe_allow_html=True)
# # Create overall summary table
# if len(display_bleu) > 0 and len(display_chrf) > 0 and len(display_comet) > 0:
# # Merge all three metrics
# merged_scores = pd.merge(display_bleu, display_chrf, on='comparison_pair', suffixes=('_bleu', '_chrf'))
# merged_scores = pd.merge(merged_scores, display_comet, on='comparison_pair')
# merged_scores['model'] = merged_scores['comparison_pair'].apply(lambda x: x.split('_')[-1].upper())
# summary_data = []
# for _, row in merged_scores.iterrows():
# summary_data.append({
# 'Model': row['model'],
# 'BLEU Score': f"{row['bleu_score']:.3f}",
# 'chrF Score': f"{row['chrf_score']:.3f}",
# 'COMET Score': f"{row['comet_score']:.3f}",
# 'Average': f"{(row['bleu_score'] + row['chrf_score'] + row['comet_score']) / 3:.3f}"
# })
# summary_df = pd.DataFrame(summary_data)
# # Only sort if dataframe has data and 'Average' column exists
# if len(summary_df) > 0 and 'Average' in summary_df.columns:
# summary_df = summary_df.sort_values('Average', ascending=False)
# # Style the dataframe
# st.dataframe(
# summary_df,
# use_container_width=True,
# hide_index=True,
# column_config={
# "Model": st.column_config.TextColumn("Model", width="medium"),
# "BLEU Score": st.column_config.NumberColumn("BLEU Score", format="%.3f"),
# "chrF Score": st.column_config.NumberColumn("chrF Score", format="%.3f"),
# "COMET Score": st.column_config.NumberColumn("COMET Score", format="%.3f"),
# "Average": st.column_config.NumberColumn("Average", format="%.3f")
# }
# )
with analysis_tab3:
# Revision Analysis Tab
st.markdown("""
<div style="margin: 20px 0;">
<h4 style="font-family: 'Inter', sans-serif; font-size: 1.2rem; font-weight: 600; color: #374151; margin: 0 0 16px 0;">
✏️ Human Translation Revision Analysis for {selected_lang}
</h4>
</div>
""".format(selected_lang=selected_lang), unsafe_allow_html=True)
# Use the global language selection
rev_code = code
# Check for revision columns
human_col = f"{rev_code}_human"
revised_col = f"{rev_code}_revised"
if human_col in df_translations.columns and revised_col in df_translations.columns:
# Get all rows with human translations for this language
df_lang_data = df_translations[[human_col, revised_col]].copy()
# Remove rows where human translation is missing (can't analyze revisions without original)
df_lang_data = df_lang_data[df_lang_data[human_col].notna()].copy()
total_human_translations = len(df_lang_data)
if total_human_translations == 0:
st.warning(f"⚠️ No human translations found for {selected_lang}")
else:
# Calculate revision statistics
# For missing revised translations, we assume no revision was made (same as original)
df_lang_data[revised_col] = df_lang_data[revised_col].fillna(df_lang_data[human_col])
# Count actual changes
revisions_made = sum(df_lang_data[human_col] != df_lang_data[revised_col])
revision_rate = (revisions_made / total_human_translations) * 100
# Count how many had revision data available
revisions_available = sum(df_translations[revised_col].notna())
# Calculate revision types
def categorize_revision(original, revised):
if pd.isna(original) or pd.isna(revised):
return "Missing Data"
if str(original).strip() == str(revised).strip():
return "No Change"
orig_words = str(original).lower().split()
rev_words = str(revised).lower().split()
if len(rev_words) > len(orig_words):
return "Expansion"
elif len(rev_words) < len(orig_words):
return "Reduction"
else:
return "Modification"
df_lang_data['revision_type'] = df_lang_data.apply(
lambda row: categorize_revision(row[human_col], row[revised_col]), axis=1
)
# Revision statistics cards
rev_col1, rev_col2, rev_col3, rev_col4 = st.columns(4)
with rev_col1:
st.markdown(f"""
<div class="metric-card">
<div class="metric-title">Human Translations</div>
<div class="metric-value">{total_human_translations}</div>
</div>
""", unsafe_allow_html=True)
with rev_col2:
st.markdown(f"""
<div class="metric-card">
<div class="metric-title">Revisions Available</div>
<div class="metric-value">{revisions_available}</div>
</div>
""", unsafe_allow_html=True)
with rev_col3:
st.markdown(f"""
<div class="metric-card">
<div class="metric-title">Changes Made</div>
<div class="metric-value">{revisions_made}</div>
</div>
""", unsafe_allow_html=True)
with rev_col4:
st.markdown(f"""
<div class="metric-card">
<div class="metric-title">Revision Rate</div>
<div class="metric-value">{revision_rate:.1f}%</div>
</div>
""", unsafe_allow_html=True)
# Revision type analysis
st.markdown("""
<h4 style="font-family: 'Inter', sans-serif; font-weight: 600; color: #374151; margin: 30px 0 16px 0;">
📈 Revision Pattern Analysis
</h4>
""", unsafe_allow_html=True)
revision_counts = df_lang_data['revision_type'].value_counts()
if len(revision_counts) > 0:
# Create revision type charts
rev_chart_col1, rev_chart_col2 = st.columns(2)
with rev_chart_col1:
# Pie chart of revision types
fig_pie = px.pie(
values=revision_counts.values,
names=revision_counts.index,
title=f"Revision Types Distribution",
color_discrete_sequence=px.colors.qualitative.Set3
)
fig_pie.update_layout(height=400, font=dict(family="Inter", size=12))
st.plotly_chart(fig_pie, use_container_width=True)
with rev_chart_col2:
# Bar chart of revision types
fig_bar = px.bar(
x=revision_counts.values,
y=revision_counts.index,
orientation='h',
title=f"Revision Frequency",
color=revision_counts.values,
color_continuous_scale='viridis'
)
fig_bar.update_layout(
height=400,
xaxis_title="Count",
yaxis_title="Revision Type",
font=dict(family="Inter", size=12)
)
st.plotly_chart(fig_bar, use_container_width=True)
# Word-level revision analysis
st.markdown("""
<h4 style="font-family: 'Inter', sans-serif; font-weight: 600; color: #374151; margin: 30px 0 16px 0;">
🔤 Word-Level Changes Analysis
</h4>
""", unsafe_allow_html=True)
# Calculate word changes only for actual revisions
words_added = []
words_removed = []
changed_revisions = df_lang_data[df_lang_data['revision_type'] != 'No Change']
for _, row in changed_revisions.iterrows():
if pd.notna(row[human_col]) and pd.notna(row[revised_col]):
orig_words = set(str(row[human_col]).lower().split())
rev_words = set(str(row[revised_col]).lower().split())
added = rev_words - orig_words
removed = orig_words - rev_words
words_added.extend(list(added))
words_removed.extend(list(removed))
from collections import Counter
added_counts = Counter(words_added)
removed_counts = Counter(words_removed)
word_analysis_col1, word_analysis_col2 = st.columns(2)
with word_analysis_col1:
st.markdown("**🟢 Most Added Words**")
if added_counts:
top_added = dict(added_counts.most_common(15))
# Create horizontal bar chart for added words
fig_added = px.bar(
x=list(top_added.values()),
y=list(top_added.keys()),
orientation='h',
title="Most Frequently Added Words",
color=list(top_added.values()),
color_continuous_scale='Greens'
)
fig_added.update_layout(
height=400,
xaxis_title="Frequency",
yaxis_title="Words",
font=dict(family="Inter", size=10)
)
st.plotly_chart(fig_added, use_container_width=True)
else:
st.markdown("*No words added in revisions*")
with word_analysis_col2:
st.markdown("**🔴 Most Removed Words**")
if removed_counts:
top_removed = dict(removed_counts.most_common(15))
# Create horizontal bar chart for removed words
fig_removed = px.bar(
x=list(top_removed.values()),
y=list(top_removed.keys()),
orientation='h',
title="Most Frequently Removed Words",
color=list(top_removed.values()),
color_continuous_scale='Reds'
)
fig_removed.update_layout(
height=400,
xaxis_title="Frequency",
yaxis_title="Words",
font=dict(family="Inter", size=10)
)
st.plotly_chart(fig_removed, use_container_width=True)
else:
st.markdown("*No words removed in revisions*")
# Revision examples
st.markdown("""
<h4 style="font-family: 'Inter', sans-serif; font-weight: 600; color: #374151; margin: 30px 0 16px 0;">
📝 Revision Examples
</h4>
""", unsafe_allow_html=True)
# Show examples of different types of revisions
revision_examples = changed_revisions.head(10)
if len(revision_examples) > 0:
# Create tabs for different revision types
available_types = revision_examples['revision_type'].unique()
if len(available_types) > 1:
type_tabs = st.tabs([f"{rtype} ({len(revision_examples[revision_examples['revision_type'] == rtype])})"
for rtype in available_types])
for i, rtype in enumerate(available_types):
with type_tabs[i]:
type_examples = revision_examples[revision_examples['revision_type'] == rtype].head(5)
for idx, row in type_examples.iterrows():
st.markdown(f"""
<div style="background: #f8fafc; border-left: 4px solid #3b82f6; padding: 16px; margin: 10px 0; border-radius: 0 8px 8px 0;">
<div style="font-weight: 600; color: #1e40af; margin-bottom: 8px;">Original:</div>
<div style="margin-bottom: 12px; font-family: monospace; background: #fff; padding: 8px; border-radius: 4px;">{row[human_col]}</div>
<div style="font-weight: 600; color: #059669; margin-bottom: 8px;">Revised:</div>
<div style="margin-bottom: 8px; font-family: monospace; background: #fff; padding: 8px; border-radius: 4px;">{row[revised_col]}</div>
<div style="font-size: 0.875rem; color: #6b7280;">Type: <strong>{row['revision_type']}</strong></div>
</div>
""", unsafe_allow_html=True)
else:
# Single type, show directly
for idx, row in revision_examples.iterrows():
st.markdown(f"""
<div style="background: #f8fafc; border-left: 4px solid #3b82f6; padding: 16px; margin: 10px 0; border-radius: 0 8px 8px 0;">
<div style="font-weight: 600; color: #1e40af; margin-bottom: 8px;">Original:</div>
<div style="margin-bottom: 12px; font-family: monospace; background: #fff; padding: 8px; border-radius: 4px;">{row[human_col]}</div>
<div style="font-weight: 600; color: #059669; margin-bottom: 8px;">Revised:</div>
<div style="margin-bottom: 8px; font-family: monospace; background: #fff; padding: 8px; border-radius: 4px;">{row[revised_col]}</div>
<div style="font-size: 0.875rem; color: #6b7280;">Type: <strong>{row['revision_type']}</strong></div>
</div>
""", unsafe_allow_html=True)
else:
st.info(f"No revisions found for {selected_lang}.")
else:
st.info(f"No revision data available for analysis.")
else:
st.warning(f"⚠️ Revision columns not found for {selected_lang}. Expected columns: `{human_col}` and `{revised_col}`")
with analysis_tab4:
# Translation comparison section
st.markdown("""
<div style="margin: 20px 0;">
<h4 style="font-family: 'Inter', sans-serif; font-size: 1.2rem; font-weight: 600; color: #374151; margin: 0 0 16px 0;">
🔍 Translation Comparison & Word Analysis for {selected_lang}
</h4>
</div>
""".format(selected_lang=selected_lang), unsafe_allow_html=True)
# Use the global language selection
comp_code = code
# Get available translation columns for selected language
available_cols = []
for col in df_translations.columns:
if col.startswith(comp_code) and col != 'english':
available_cols.append(col)
if len(available_cols) >= 2:
comp_col1, comp_col2, comp_col3 = st.columns([1, 1, 1])
with comp_col1:
col1_selection = st.selectbox(
"First Translation:",
available_cols,
key="col1_select"
)
with comp_col2:
col2_selection = st.selectbox(
"Second Translation:",
[col for col in available_cols if col != col1_selection],
key="col2_select"
)
with comp_col3:
# Add spacing to align button with selectboxes
st.markdown('<div style="margin-top: 25px;"></div>', unsafe_allow_html=True)
analyze_clicked = st.button(
"🔍 Analyze",
type="primary",
use_container_width=True,
key="analyze_word_diff_btn"
)
if analyze_clicked:
# Perform word analysis with ALL available data
def get_word_differences(text1, text2):
# Handle missing data by using available text
if pd.isna(text1) and pd.isna(text2):
return set(), set(), set()
# If one is missing, treat it as empty for comparison
words1 = set(str(text1).lower().split()) if pd.notna(text1) else set()
words2 = set(str(text2).lower().split()) if pd.notna(text2) else set()
only_in_1 = words1 - words2
only_in_2 = words2 - words1
common = words1 & words2
return only_in_1, only_in_2, common
# Analyze ALL rows with available data
unique_words_1 = []
unique_words_2 = []
common_words = []
all_words_1 = [] # For frequency counting
all_words_2 = [] # For frequency counting
# Process all rows, including those with missing revisions
for _, row in df_translations.iterrows():
# Get text from columns, using original if revision is missing
text1 = row[col1_selection] if pd.notna(row[col1_selection]) else None
text2 = row[col2_selection] if pd.notna(row[col2_selection]) else None
# Skip if both are missing
if text1 is None and text2 is None:
continue
# Collect ALL words from each column for frequency analysis
if text1 is not None:
words_from_1 = str(text1).lower().split()
all_words_1.extend(words_from_1)
if text2 is not None:
words_from_2 = str(text2).lower().split()
all_words_2.extend(words_from_2)
# Only do comparison if both texts exist
if text1 is not None and text2 is not None:
only_1, only_2, common = get_word_differences(text1, text2)
unique_words_1.extend(list(only_1))
unique_words_2.extend(list(only_2))
common_words.extend(list(common))
from collections import Counter
# Count frequencies from ALL words
all_freq_1 = Counter(all_words_1) # All words from column 1
all_freq_2 = Counter(all_words_2) # All words from column 2
unique_freq_1 = Counter(unique_words_1) # Only unique words
unique_freq_2 = Counter(unique_words_2) # Only unique words
common_freq = Counter(common_words) # Only common words
# Display statistics
st.markdown('<div class="comparison-container">', unsafe_allow_html=True)
col_result1, col_result2, col_result3, col_result4 = st.columns(4)
with col_result1:
st.markdown(f"""
<div style="text-align: center; padding: 15px;">
<h5 style="color: #dc2626; margin-bottom: 10px;">Unique to {col1_selection.replace('_', ' ').title()}</h5>
<div style="font-size: 1.3rem; font-weight: bold; color: #dc2626;">{len(unique_freq_1)}</div>
<div style="color: #6b7280; font-size: 0.8rem;">unique words</div>
</div>
""", unsafe_allow_html=True)
with col_result2:
st.markdown(f"""
<div style="text-align: center; padding: 15px;">
<h5 style="color: #166534; margin-bottom: 10px;">Unique to {col2_selection.replace('_', ' ').title()}</h5>
<div style="font-size: 1.3rem; font-weight: bold; color: #166534;">{len(unique_freq_2)}</div>
<div style="color: #6b7280; font-size: 0.8rem;">unique words</div>
</div>
""", unsafe_allow_html=True)
with col_result3:
st.markdown(f"""
<div style="text-align: center; padding: 15px;">
<h5 style="color: #475569; margin-bottom: 10px;">Common Words</h5>
<div style="font-size: 1.3rem; font-weight: bold; color: #475569;">{len(common_freq)}</div>
<div style="color: #6b7280; font-size: 0.8rem;">shared words</div>
</div>
""", unsafe_allow_html=True)
with col_result4:
st.markdown(f"""
<div style="text-align: center; padding: 15px;">
<h5 style="color: #7c3aed; margin-bottom: 10px;">Total Vocabulary</h5>
<div style="font-size: 1.3rem; font-weight: bold; color: #7c3aed;">{len(set(all_words_1 + all_words_2))}</div>
<div style="color: #6b7280; font-size: 0.8rem;">total unique words</div>
</div>
""", unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
# Word Clouds Section
st.markdown("""
<h4 style="font-family: 'Inter', sans-serif; font-weight: 600; color: #374151; margin: 30px 0 16px 0;">
☁️ Word Clouds Visualization
</h4>
""", unsafe_allow_html=True)
# Generate word clouds using matplotlib and wordcloud
try:
# Show loading spinner while generating word clouds
with st.spinner("🎨 Generating word clouds... This may take a moment."):
import matplotlib.pyplot as plt
from wordcloud import WordCloud
import io
import base64
# Function to create word cloud image (optimized)
def create_wordcloud_image(word_freq, title, color_scheme='viridis'):
if not word_freq or len(word_freq) == 0:
return None
try:
# Create word cloud with all frequency data, but limit max_words to 25
wordcloud = WordCloud(
width=300, # Reduced size
height=200, # Reduced size
background_color='white',
colormap=color_scheme,
max_words=25, # Display top 25 words
relative_scaling=0.6,
random_state=42,
min_font_size=8,
max_font_size=60,
prefer_horizontal=0.9,
collocations=False # Avoid word combinations
).generate_from_frequencies(word_freq) # Use ALL frequency data
# Create matplotlib figure with smaller size
fig, ax = plt.subplots(figsize=(5, 3)) # Smaller figure
ax.imshow(wordcloud, interpolation='bilinear')
ax.axis('off')
ax.set_title(title, fontsize=10, fontweight='bold', pad=10)
# Convert to base64 for HTML display
buffer = io.BytesIO()
plt.savefig(buffer, format='png', bbox_inches='tight', dpi=100, facecolor='white') # Lower DPI
buffer.seek(0)
image_base64 = base64.b64encode(buffer.getvalue()).decode()
plt.close(fig) # Important: close figure to free memory
return image_base64
except Exception as e:
st.warning(f"Error creating word cloud for {title}: {str(e)}")
return None
# Create all word clouds in one row
cloud_col1, cloud_col2, cloud_col3 = st.columns(3)
with cloud_col1:
if unique_freq_1 and len(unique_freq_1) > 0:
# Use ALL unique words but display top 25 in cloud
img1 = create_wordcloud_image(
dict(unique_freq_1), # Use ALL unique words for frequency
f"Unique: {col1_selection.replace('_', ' ').title()}",
'Reds'
)
if img1:
st.markdown(f'''
<div style="text-align: center; margin: 10px 0;">
<img src="data:image/png;base64,{img1}" style="max-width: 100%; height: auto; border-radius: 6px; box-shadow: 0 1px 4px rgba(0,0,0,0.1);">
</div>
<div style="text-align: center; font-size: 0.8rem; color: #6b7280;">
Showing top 25 of {len(unique_freq_1)} unique words
</div>
''', unsafe_allow_html=True)
else:
st.markdown("""
<div style="text-align: center; padding: 40px; background: #fef2f2; border-radius: 6px; color: #dc2626;">
<div style="font-size: 2rem;">📝</div>
<div style="font-size: 0.9rem; margin-top: 8px;">No unique words</div>
</div>
""", unsafe_allow_html=True)
else:
st.markdown("""
<div style="text-align: center; padding: 40px; background: #f9fafb; border-radius: 6px; color: #6b7280;">
<div style="font-size: 2rem;">📝</div>
<div style="font-size: 0.9rem; margin-top: 8px;">No unique words found</div>
</div>
""", unsafe_allow_html=True)
with cloud_col2:
if unique_freq_2 and len(unique_freq_2) > 0:
# Use ALL unique words but display top 25 in cloud
img2 = create_wordcloud_image(
dict(unique_freq_2), # Use ALL unique words for frequency
f"Unique: {col2_selection.replace('_', ' ').title()}",
'Greens'
)
if img2:
st.markdown(f'''
<div style="text-align: center; margin: 10px 0;">
<img src="data:image/png;base64,{img2}" style="max-width: 100%; height: auto; border-radius: 6px; box-shadow: 0 1px 4px rgba(0,0,0,0.1);">
</div>
<div style="text-align: center; font-size: 0.8rem; color: #6b7280;">
Showing top 25 of {len(unique_freq_2)} unique words
</div>
''', unsafe_allow_html=True)
else:
st.markdown("""
<div style="text-align: center; padding: 40px; background: #f0fdf4; border-radius: 6px; color: #166534;">
<div style="font-size: 2rem;">📝</div>
<div style="font-size: 0.9rem; margin-top: 8px;">No unique words</div>
</div>
""", unsafe_allow_html=True)
else:
st.markdown("""
<div style="text-align: center; padding: 40px; background: #f9fafb; border-radius: 6px; color: #6b7280;">
<div style="font-size: 2rem;">📝</div>
<div style="font-size: 0.9rem; margin-top: 8px;">No unique words found</div>
</div>
""", unsafe_allow_html=True)
with cloud_col3:
if common_freq and len(common_freq) > 0:
# Use ALL common words but display top 25 in cloud
img3 = create_wordcloud_image(
dict(common_freq), # Use ALL common words for frequency
"Common Words",
'Blues'
)
if img3:
st.markdown(f'''
<div style="text-align: center; margin: 10px 0;">
<img src="data:image/png;base64,{img3}" style="max-width: 100%; height: auto; border-radius: 6px; box-shadow: 0 1px 4px rgba(0,0,0,0.1);">
</div>
<div style="text-align: center; font-size: 0.8rem; color: #6b7280;">
Showing top 25 of {len(common_freq)} common words
</div>
''', unsafe_allow_html=True)
else:
st.markdown("""
<div style="text-align: center; padding: 40px; background: #eff6ff; border-radius: 6px; color: #1d4ed8;">
<div style="font-size: 2rem;">📝</div>
<div style="font-size: 0.9rem; margin-top: 8px;">No common words</div>
</div>
""", unsafe_allow_html=True)
else:
st.markdown("""
<div style="text-align: center; padding: 40px; background: #f9fafb; border-radius: 6px; color: #6b7280;">
<div style="font-size: 2rem;">🤝</div>
<div style="font-size: 0.9rem; margin-top: 8px;">No common words found</div>
</div>
""", unsafe_allow_html=True)
except ImportError:
st.warning("📦 WordCloud library not available. Install with: `pip install wordcloud`")
# Fallback to top words lists
st.markdown("**📋 Top Unique Words (Fallback)**")
fallback_col1, fallback_col2, fallback_col3 = st.columns(3)
with fallback_col1:
st.markdown(f"**🔴 Unique to {col1_selection.replace('_', ' ').title()}**")
if unique_freq_1:
for word, count in unique_freq_1.most_common(10):
st.markdown(f"• {word} ({count})")
else:
st.markdown("*No unique words*")
with fallback_col2:
st.markdown(f"**🟢 Unique to {col2_selection.replace('_', ' ').title()}**")
if unique_freq_2:
for word, count in unique_freq_2.most_common(10):
st.markdown(f"• {word} ({count})")
else:
st.markdown("*No unique words*")
with fallback_col3:
st.markdown("**🔵 Common Words**")
if common_freq:
for word, count in common_freq.most_common(10):
st.markdown(f"• {word} ({count})")
else:
st.markdown("*No common words*")
# Word frequency bar charts as additional analysis
st.markdown("""
<h4 style="font-family: 'Inter', sans-serif; font-weight: 600; color: #374151; margin: 30px 0 16px 0;">
📊 Top Words Frequency Comparison
</h4>
""", unsafe_allow_html=True)
freq_col1, freq_col2 = st.columns(2)
with freq_col1:
if unique_freq_1:
top_words_1 = dict(unique_freq_1.most_common(10))
fig_freq1 = px.bar(
x=list(top_words_1.values()),
y=list(top_words_1.keys()),
orientation='h',
title=f"Top Unique Words: {col1_selection.replace('_', ' ').title()}",
color=list(top_words_1.values()),
color_continuous_scale='Reds'
)
fig_freq1.update_layout(
height=400,
xaxis_title="Frequency",
yaxis_title="Words",
font=dict(family="Inter", size=10)
)
st.plotly_chart(fig_freq1, use_container_width=True)
with freq_col2:
if unique_freq_2:
top_words_2 = dict(unique_freq_2.most_common(10))
fig_freq2 = px.bar(
x=list(top_words_2.values()),
y=list(top_words_2.keys()),
orientation='h',
title=f"Top Unique Words: {col2_selection.replace('_', ' ').title()}",
color=list(top_words_2.values()),
color_continuous_scale='Greens'
)
fig_freq2.update_layout(
height=400,
xaxis_title="Frequency",
yaxis_title="Words",
font=dict(family="Inter", size=10)
)
st.plotly_chart(fig_freq2, use_container_width=True)
else:
st.warning("⚠️ Need at least 2 translation columns for comparison analysis.")
else:
st.markdown("""
<div style="background: #fef2f2; border: 1px solid #fecaca; border-radius: 8px; padding: 24px; margin: 16px 0; text-align: center;">
<h3 style="font-family: 'Inter', sans-serif; color: #dc2626; margin: 0 0 12px 0;">❌ No Data Available</h3>
<p style="font-family: 'Inter', sans-serif; color: #7f1d1d; margin: 0;">
Please ensure translation data files are available in the data directory.
</p>
</div>
""", unsafe_allow_html=True)
# Footer
st.markdown("---")
st.markdown("""
<div style="text-align: center; color: #6b7280; font-family: 'Inter', sans-serif; font-size: 0.875rem;">
Built for DSFSI using Streamlit • Translation APIs: Gemini, GPT, NLLB (hosted locally) • Data Science for Social Impact
</div>
""", unsafe_allow_html=True)
if __name__ == "__main__":
main() |