Spaces:
Sleeping
Sleeping
File size: 13,215 Bytes
e322980 54cd5d9 ee88f70 54cd5d9 e322980 54cd5d9 e322980 5c455e2 ee88f70 54cd5d9 e322980 f572b0e e322980 ee88f70 e322980 ee88f70 54cd5d9 ee88f70 54cd5d9 ee88f70 54cd5d9 e322980 54cd5d9 ee88f70 c458c3e ee88f70 e322980 ee88f70 c458c3e ee88f70 54cd5d9 ee88f70 54cd5d9 ee88f70 c458c3e e322980 c458c3e e322980 c458c3e 879e1cd ee88f70 54cd5d9 ee88f70 e322980 ee88f70 f572b0e ee88f70 e322980 ee88f70 e322980 54cd5d9 ee88f70 54cd5d9 e322980 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
# # app.py β Object Detection only (multi-image YOLO, up to 10)
# import os
# import csv
# import tempfile
# from pathlib import Path
# from typing import List, Tuple
# import gradio as gr
# from PIL import Image
# # Try import ultralytics (ensure it's in requirements.txt)
# try:
# from ultralytics import YOLO
# except Exception:
# YOLO = None
# BASE_DIR = os.path.dirname(os.path.abspath(__file__))
# MAX_BATCH = 10
# # Option A: local file baked into Space (easiest if allowed)
# YOLO_WEIGHTS = os.path.join(BASE_DIR, "yolo11_best.pt")
# # Option B (optional): pull from a private HF model repo using a Space secret
# # Set these env vars in your Space if you want auto-download:
# # HF_TOKEN=<read token> YOLO_REPO_ID="yourname/yolo-detector"
# HF_TOKEN = os.environ.get("HF_TOKEN")
# YOLO_REPO_ID = os.environ.get("YOLO_REPO_ID")
# def _download_from_hub_if_needed() -> str | None:
# """If YOLO_REPO_ID is set, download weights with huggingface_hub; else return None."""
# if not YOLO_REPO_ID:
# return None
# try:
# from huggingface_hub import snapshot_download
# local_dir = snapshot_download(
# repo_id=YOLO_REPO_ID, repo_type="model", token=HF_TOKEN
# )
# # try common filenames
# for name in ("yolo11_best.pt", "best.pt", "yolo.pt", "weights.pt"):
# cand = Path(local_dir) / name
# if cand.exists():
# return str(cand)
# except Exception as e:
# print("[YOLO] Hub download failed:", e)
# return None
# _yolo_model = None
# def _load_yolo():
# """Load YOLO weights either from local file or HF Hub."""
# global _yolo_model
# if _yolo_model is not None:
# return _yolo_model
# if YOLO is None:
# raise RuntimeError("ultralytics package not installed. Add 'ultralytics' to requirements.txt")
# model_path = None
# if os.path.exists(YOLO_WEIGHTS):
# model_path = YOLO_WEIGHTS
# else:
# hub_path = _download_from_hub_if_needed()
# if hub_path:
# model_path = hub_path
# if not model_path:
# raise FileNotFoundError(
# "YOLO weights not found. Either include 'yolo11_best.pt' in the repo root, "
# "or set YOLO_REPO_ID (+ HF_TOKEN if private) to pull from the Hub."
# )
# _yolo_model = YOLO(model_path)
# return _yolo_model
# def detect_objects_batch(files, conf=0.25, iou=0.25):
# """
# Run YOLO detection on multiple images (up to 10).
# Returns: gallery of annotated images, rows table, csv filepath
# """
# if YOLO is None:
# return [], [], None
# if not files:
# return [], [], None
# try:
# ymodel = _load_yolo()
# except Exception as e:
# print("YOLO load error:", e)
# return [], [], None
# gallery, table_rows = [], []
# for f in files[:MAX_BATCH]:
# path = getattr(f, "name", None) or getattr(f, "path", None) or f
# try:
# results = ymodel.predict(source=path, conf=conf, iou=iou, imgsz=640, verbose=False)
# except Exception as e:
# print(f"Detection failed for {path}:", e)
# continue
# res = results[0]
# # annotated image
# ann_path = None
# try:
# ann_img = res.plot()
# ann_pil = Image.fromarray(ann_img)
# out_dir = tempfile.mkdtemp(prefix="yolo_out_", dir=BASE_DIR)
# os.makedirs(out_dir, exist_ok=True)
# ann_filename = Path(path).stem + "_annotated.jpg"
# ann_path = os.path.join(out_dir, ann_filename)
# ann_pil.save(ann_path)
# except Exception:
# try:
# out_dir = tempfile.mkdtemp(prefix="yolo_out_", dir=BASE_DIR)
# res.save(save_dir=out_dir)
# saved_files = getattr(res, "files", [])
# ann_path = saved_files[0] if saved_files else None
# except Exception:
# ann_path = None
# # extract detections
# boxes = getattr(res, "boxes", None)
# if boxes is None or len(boxes) == 0:
# table_rows.append([os.path.basename(path), 0, "", "", ""])
# img_for_gallery = Image.open(ann_path).convert("RGB") if ann_path and os.path.exists(ann_path) \
# else Image.open(path).convert("RGB")
# gallery.append((img_for_gallery, f"{os.path.basename(path)}\nNo detections"))
# continue
# det_labels, det_scores, det_boxes = [], [], []
# for box in boxes:
# cls = int(box.cls.cpu().item()) if hasattr(box, "cls") else None
# # conf
# try:
# confscore = float(box.conf.cpu().item()) if hasattr(box, "conf") else None
# except Exception:
# try:
# confscore = float(box.conf.item())
# except Exception:
# confscore = None
# # xyxy
# coords = []
# if hasattr(box, "xyxy"):
# try:
# arr = box.xyxy.cpu().numpy()
# if getattr(arr, "ndim", None) == 2 and arr.shape[0] == 1:
# coords = arr[0].tolist()
# elif getattr(arr, "ndim", None) == 1:
# coords = arr.tolist()
# else:
# coords = arr.reshape(-1).tolist()
# except Exception:
# try:
# coords = box.xyxy.tolist()
# except Exception:
# coords = []
# det_labels.append(ymodel.names.get(cls, str(cls)) if cls is not None else "")
# det_scores.append(round(confscore, 4) if confscore is not None else "")
# try:
# det_boxes.append([round(float(x), 2) for x in coords])
# except Exception:
# det_boxes.append([str(coords)])
# label_conf_pairs = [f"{l}:{s}" for l, s in zip(det_labels, det_scores)]
# boxes_repr = ["[" + ", ".join(map(str, b)) + "]" for b in det_boxes]
# table_rows.append([
# os.path.basename(path),
# len(det_labels),
# ", ".join(label_conf_pairs),
# ", ".join(boxes_repr),
# "; ".join([str(b) for b in det_boxes]),
# ])
# img_for_gallery = Image.open(ann_path).convert("RGB") if ann_path and os.path.exists(ann_path) \
# else Image.open(path).convert("RGB")
# gallery.append((img_for_gallery, f"{os.path.basename(path)}\n{len(det_labels)} detections"))
# # write CSV
# csv_path = None
# try:
# tmp = tempfile.NamedTemporaryFile(
# delete=False, suffix=".csv", prefix="yolo_preds_", dir=BASE_DIR,
# mode="w", newline='', encoding='utf-8'
# )
# writer = csv.writer(tmp)
# writer.writerow(["filename", "num_detections", "labels_with_conf", "boxes", "raw_boxes"])
# for r in table_rows:
# writer.writerow(r)
# tmp.flush(); tmp.close()
# csv_path = tmp.name
# except Exception as e:
# print("Failed to write CSV:", e)
# csv_path = None
# return gallery, table_rows, csv_path
# # ---------- UI ----------
# if YOLO is None:
# demo = gr.Interface(
# fn=lambda *a, **k: ("Ultralytics not installed; add 'ultralytics' to requirements.txt",),
# inputs=[],
# outputs="text",
# title="π BenthicAI β Object Detection",
# description="Ultralytics is not installed."
# )
# else:
# demo = gr.Interface(
# fn=detect_objects_batch,
# inputs=[
# gr.Files(label="Upload images (max 10)"),
# gr.Slider(minimum=0.0, maximum=1.0, value=0.25, step=0.01, label="Conf threshold"),
# gr.Slider(minimum=0.0, maximum=1.0, value=0.25, step=0.01, label="IoU threshold"),
# ],
# outputs=[
# gr.Gallery(label="Detections (annotated)", height=500, rows=3),
# gr.Dataframe(headers=["filename", "num_detections", "labels_with_conf", "boxes", "raw_boxes"],
# label="Detection Table"),
# gr.File(label="Download CSV"),
# ],
# title="π BenthicAI β Object Detection",
# description=(
# "Run YOLO object detection on multiple images. "
# "Place 'yolo11_best.pt' in the repo root, OR set YOLO_REPO_ID (+ HF_TOKEN if private) "
# "to fetch from the Hub."
# ),
# )
# if __name__ == "__main__":
# demo.launch(server_name="0.0.0.0", server_port=7860)
# app.py β Image Classification only (single + batch up to 10)
import os
import csv
import tempfile
from pathlib import Path
from typing import List, Tuple
import gradio as gr
import torch
import torch.nn.functional as F
from transformers import AutoImageProcessor, AutoModelForImageClassification
from PIL import Image
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
MODEL_ID = "dshi01/convnext-tiny-224-7clss" # your HF model repo id
PROCESSOR_ID = "facebook/convnext-tiny-224" # feature extractor
print(f"[IC] Loading model: {MODEL_ID}")
processor = AutoImageProcessor.from_pretrained(PROCESSOR_ID)
model = AutoModelForImageClassification.from_pretrained(MODEL_ID)
model.eval()
# Build id2label list (stable order)
ID2LABEL = [
model.config.id2label.get(str(i), model.config.id2label.get(i, f"Label_{i}"))
for i in range(model.config.num_labels)
]
def classify_image(image):
"""Single-image classification."""
if not isinstance(image, Image.Image):
image = Image.fromarray(image).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
probs = F.softmax(logits, dim=1)[0].tolist()
return {ID2LABEL[i]: float(p) for i, p in enumerate(probs)}
MAX_BATCH = 10
def classify_images_batch(files):
"""
Batch classification (up to 10).
Returns: gallery [(img, caption)], table rows, CSV filepath
"""
if not files:
return [], [], None
files = files[:MAX_BATCH]
# Load PILs
pil_images, names = [], []
for f in files:
path = getattr(f, "name", None) or getattr(f, "path", None) or f
try:
img = Image.open(path).convert("RGB")
pil_images.append(img)
names.append(os.path.basename(path))
except Exception:
continue
if not pil_images:
return [], [], None
inputs = processor(images=pil_images, return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
probs = F.softmax(logits, dim=1)
gallery = []
table_rows = [] # [filename, top1_label, top1_conf, top3_labels, top3_confs]
for idx, (img, fname) in enumerate(zip(pil_images, names)):
p = probs[idx].tolist()
top_idxs = sorted(range(len(p)), key=lambda i: p[i], reverse=True)[:3]
top1 = top_idxs[0]
caption = f"{ID2LABEL[top1]} ({p[top1]:.2%})"
gallery.append((img, f"{fname}\n{caption}"))
top3_labels = [ID2LABEL[i] for i in top_idxs]
top3_scores = [round(p[i], 4) for i in top_idxs]
table_rows.append([
fname,
ID2LABEL[top1],
round(p[top1], 4),
", ".join(top3_labels),
", ".join(map(str, top3_scores)),
])
# Create CSV for download
csv_path = None
try:
tmp = tempfile.NamedTemporaryFile(
delete=False, suffix=".csv", prefix="predictions_", dir=BASE_DIR,
mode="w", newline='', encoding='utf-8'
)
writer = csv.writer(tmp)
writer.writerow(["filename", "top1_label", "top1_conf", "top3_labels", "top3_confs"])
for row in table_rows:
writer.writerow(row)
tmp.flush(); tmp.close()
csv_path = tmp.name
except Exception:
csv_path = None
return gallery, table_rows, csv_path
# ---------- UI ----------
single = gr.Interface(
fn=classify_image,
inputs=gr.Image(type="pil", label="Upload Underwater Image"),
outputs=gr.Label(num_top_classes=len(ID2LABEL), label="Species Classification"),
title="π BenthicAI β Single Image",
description="Classify one image into one of 7 benthic species."
)
batch = gr.Interface(
fn=classify_images_batch,
inputs=gr.Files(label="Upload up to 10 images"),
outputs=[
gr.Gallery(label="Results (Top-1 in caption)", height=500, rows=3),
gr.Dataframe(
headers=["filename", "top1_label", "top1_conf", "top3_labels", "top3_confs"],
label="Predictions Table",
wrap=True
),
gr.File(label="Download CSV")
],
title="π BenthicAI β Batch (up to 10)",
description="Upload multiple images (max 10)."
)
demo = gr.TabbedInterface([single, batch], ["Single", "Batch"])
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)
|