Phauglin's picture
Update app.py
85a7393 verified
raw
history blame
8.11 kB
import base64
import gradio as gr
import random
from fastai.vision.all import *
from openai import OpenAI
from pathlib import Path
# Dictionary of plant names and their Wikipedia links
search_terms_wikipedia = {
"blazing star": "https://en.wikipedia.org/wiki/Mentzelia",
"bristlecone pine": "https://en.wikipedia.org/wiki/Pinus_longaeva",
"california bluebell": "https://en.wikipedia.org/wiki/Phacelia_minor",
"california buckeye": "https://en.wikipedia.org/wiki/Aesculus_californica",
"california buckwheat": "https://en.wikipedia.org/wiki/Eriogonum_fasciculatum",
"california fuchsia": "https://en.wikipedia.org/wiki/Epilobium_canum",
"california checkerbloom": "https://en.wikipedia.org/wiki/Sidalcea_malviflora",
"california lilac": "https://en.wikipedia.org/wiki/Ceanothus",
"california poppy": "https://en.wikipedia.org/wiki/Eschscholzia_californica",
"california sagebrush": "https://en.wikipedia.org/wiki/Artemisia_californica",
"california wild grape": "https://en.wikipedia.org/wiki/Vitis_californica",
"california wild rose": "https://en.wikipedia.org/wiki/Rosa_californica",
"coyote mint": "https://en.wikipedia.org/wiki/Monardella",
"elegant clarkia": "https://en.wikipedia.org/wiki/Clarkia_unguiculata",
"baby blue eyes": "https://en.wikipedia.org/wiki/Nemophila_menziesii",
"hummingbird sage": "https://en.wikipedia.org/wiki/Salvia_spathacea",
"delphinium": "https://en.wikipedia.org/wiki/Delphinium",
"matilija poppy": "https://en.wikipedia.org/wiki/Romneya_coulteri",
"blue-eyed grass": "https://en.wikipedia.org/wiki/Sisyrinchium_bellum",
"penstemon spectabilis": "https://en.wikipedia.org/wiki/Penstemon_spectabilis",
"seaside daisy": "https://en.wikipedia.org/wiki/Erigeron_glaucus",
"sticky monkeyflower": "https://en.wikipedia.org/wiki/Diplacus_aurantiacus",
"tidy tips": "https://en.wikipedia.org/wiki/Layia_platyglossa",
"wild cucumber": "https://en.wikipedia.org/wiki/Marah_(plant)",
"douglas iris": "https://en.wikipedia.org/wiki/Iris_douglasiana",
"goldfields coreopsis": "https://en.wikipedia.org/wiki/Coreopsis"
}
flowers_endangerment = {
"blazing star": "Not considered endangered.",
"bristlecone pine": "Least Concern (stable population).",
"california bluebell": "Not listed as endangered or threatened.",
"california buckeye": "Not endangered.",
"california buckwheat": "Generally secure.",
"california fuchsia": "Not endangered overall; some subspecies at risk.",
"california checkerbloom": "Not generally endangered; some subspecies critically imperiled.",
"california lilac": "Most species not endangered; some species are endangered.",
"california poppy": "Generally secure; some subspecies face threats.",
"california sagebrush": "Considered secure (G4-G5).",
"california wild grape": "Apparently secure (G4).",
"california wild rose": "Secure (G4).",
"coyote mint": "Varies by species; some federally listed as endangered.",
"elegant clarkia": "Secure (G5).",
"baby blue eyes": "Secure.",
"hummingbird sage": "Apparently secure (G4).",
"delphinium": "Varies by species; some are endangered.",
"matilija poppy": "Not currently endangered.",
"blue-eyed grass": "Not endangered.",
"penstemon spectabilis": "Not endangered.",
"seaside daisy": "Not endangered.",
"sticky monkeyflower": "Not endangered.",
"tidy tips": "Generally not endangered; some subspecies may be at risk.",
"wild cucumber": "Generally not endangered.",
"douglas iris": "Not endangered.",
"goldfields coreopsis": "Varies by species; many not endangered."
}
def get_status(flower_name):
"""Return the endangerment status of a given flower name."""
return flowers_endangerment.get(flower_name, "Flower not found in database.")
# Templates for AI image generation
prompt_templates = [
"A dreamy watercolor scene of a {flower} on a misty morning trail, with golden sunbeams filtering through towering redwoods, and a curious hummingbird hovering nearby.",
"A loose, expressive watercolor sketch of a {flower} in a wild meadow, surrounded by dancing butterflies and morning dew drops sparkling like diamonds in the dawn light.",
"An artist's nature journal page featuring a detailed {flower} study, with delicate ink lines and soft watercolor washes, complete with small sketches of bees and field notes in the margins.",
"A vibrant plein air painting of a {flower} patch along a coastal hiking trail, with crashing waves and rugged cliffs in the background, painted in bold, energetic brushstrokes.",
"A whimsical mixed-media scene of a {flower} garden at sunrise, combining loose watercolor washes with detailed botanical illustrations, featuring hidden wildlife and morning fog rolling through the valley."
]
# Example images (using local paths)
example_images = [
str(Path('example_images/example_1.jpg')),
str(Path('example_images/example_2.jpg')),
str(Path('example_images/example_3.jpg')),
str(Path('example_images/example_4.jpg')),
str(Path('example_images/example_5.jpg'))
]
# Main function to process the uploaded image
def process_image(img, generate_image=True):
print("Starting prediction...")
predicted_class, _, probs = learn.predict(img)
print(f"Prediction complete: {predicted_class}")
# Format classification results for Gradio Label
classification_results = {
predicted_class: float(probs[learn.dls.vocab.o2i[predicted_class]])
}
# Get Wikipedia link
wiki_url = search_terms_wikipedia.get(predicted_class, "No Wikipedia entry found.")
# Get endangerment status
endangerment_status = get_status(predicted_class)
print(f"Status found: {endangerment_status}")
# Generate artistic interpretation using DALL-E
print("Sending request to DALL-E...")
try:
client = OpenAI()
if generate_image:
result = client.images.generate(
model="gpt-image-1",
prompt=random.choice(prompt_templates).format(flower=predicted_class),
size="1024x1024",
background="transparent",
quality="medium"
)
image_base64 = result.data[0].b64_json
generated_image = base64.b64decode(image_base64)
else:
generated_image = None
except Exception as e:
print(f"Error generating image: {e}")
generated_image = None
print("Image retrieved and ready to return")
return classification_results, generated_image, wiki_url, endangerment_status
# Function to clear all outputs
def clear_outputs():
return {
label_output: None,
generated_image: None,
wiki_output: None,
endangerment_output: None # ← NEW
}
# Load the AI model
learn = load_learner('resnet50_30_categories.pkl')
# Create the web interface
with gr.Blocks() as demo:
# Input section
with gr.Row():
input_image = gr.Image(height=230, width=230, label="Upload Image for Classification", type="pil")
# Output section
with gr.Row():
with gr.Column():
label_output = gr.Label(label="Classification Results")
wiki_output = gr.Textbox(label="Wikipedia Article Link", lines=1)
endangerment_output = gr.Textbox(label="Endangerment Status", lines=1) # ← NEW
generated_image = gr.Image(label="AI Generated Interpretation")
# Add example images using local paths
gr.Examples(
examples=example_images,
inputs=input_image,
examples_per_page=6,
fn=None,
outputs=None
)
input_image.change(
fn=lambda img: process_image(img, generate_image=True),
inputs=input_image,
outputs=[label_output, generated_image, wiki_output, endangerment_output]
)
input_image.clear(
fn=clear_outputs,
inputs=[],
outputs=[label_output, generated_image, wiki_output, endangerment_output]
)
# Start the application
demo.launch(inline=False)