Update app.py
Browse files
app.py
CHANGED
|
@@ -1,13 +1,14 @@
|
|
| 1 |
-
from fastai.vision.all import *
|
| 2 |
-
import gradio as gr
|
| 3 |
import fal_client
|
| 4 |
-
|
| 5 |
import io
|
|
|
|
|
|
|
| 6 |
import random
|
| 7 |
import requests
|
|
|
|
|
|
|
|
|
|
| 8 |
from pathlib import Path
|
| 9 |
-
import openai
|
| 10 |
-
import os
|
| 11 |
|
| 12 |
# Dictionary of plant names and their Wikipedia links
|
| 13 |
search_terms_wikipedia = {
|
|
@@ -68,6 +69,12 @@ flowers_endangerment = {
|
|
| 68 |
"goldfields coreopsis": "Varies by species; many not endangered."
|
| 69 |
}
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
# Templates for AI image generation
|
| 72 |
prompt_templates = [
|
| 73 |
"A dreamy watercolor scene of a {flower} on a misty morning trail, with golden sunbeams filtering through towering redwoods, and a curious hummingbird hovering nearby.",
|
|
@@ -84,42 +91,31 @@ example_images = [
|
|
| 84 |
str(Path('example_images/example_3.jpg')),
|
| 85 |
str(Path('example_images/example_4.jpg')),
|
| 86 |
str(Path('example_images/example_5.jpg'))
|
| 87 |
-
|
| 88 |
]
|
| 89 |
|
|
|
|
| 90 |
# Function to handle AI generation progress updates
|
| 91 |
def on_queue_update(update):
|
| 92 |
if isinstance(update, fal_client.InProgress):
|
| 93 |
for log in update.logs:
|
| 94 |
-
|
| 95 |
-
|
| 96 |
|
| 97 |
|
| 98 |
-
def get_status(flower_name):
|
| 99 |
-
"""Return the endangerment status of a given flower name."""
|
| 100 |
-
# Normalize input for dictionary lookup
|
| 101 |
-
normalized_name = flower_name.title()
|
| 102 |
-
return flowers_endangerment.get(normalized_name, "Flower not found in database.")
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
# Main function to process the uploaded image
|
| 108 |
# Main function to process the uploaded image
|
| 109 |
def process_image(img):
|
| 110 |
print("Starting prediction...")
|
| 111 |
predicted_class, _, probs = learn.predict(img)
|
| 112 |
print(f"Prediction complete: {predicted_class}")
|
| 113 |
-
|
| 114 |
classification_results = dict(zip(learn.dls.vocab, map(float, probs)))
|
| 115 |
-
|
| 116 |
# Get Wikipedia link
|
| 117 |
wiki_url = search_terms_wikipedia.get(predicted_class, "No Wikipedia entry found.")
|
| 118 |
-
|
| 119 |
# Get endangerment status
|
| 120 |
endangerment_status = get_status(predicted_class)
|
| 121 |
print(f"Status found: {endangerment_status}")
|
| 122 |
-
|
| 123 |
# Generate artistic interpretation using DALL-E
|
| 124 |
print("Sending request to DALL-E...")
|
| 125 |
try:
|
|
@@ -130,19 +126,19 @@ def process_image(img):
|
|
| 130 |
quality="standard",
|
| 131 |
n=1,
|
| 132 |
)
|
| 133 |
-
|
| 134 |
# Get the image URL
|
| 135 |
image_url = response.data[0].url
|
| 136 |
print(f"Image URL: {image_url}")
|
| 137 |
-
|
| 138 |
# Download the generated image
|
| 139 |
response = requests.get(image_url)
|
| 140 |
generated_image = Image.open(io.BytesIO(response.content))
|
| 141 |
-
|
| 142 |
except Exception as e:
|
| 143 |
print(f"Error generating image: {e}")
|
| 144 |
generated_image = None
|
| 145 |
-
|
| 146 |
print("Image retrieved and ready to return")
|
| 147 |
return classification_results, generated_image, wiki_url, endangerment_status
|
| 148 |
|
|
@@ -165,9 +161,8 @@ with gr.Blocks() as demo:
|
|
| 165 |
# Input section
|
| 166 |
with gr.Row():
|
| 167 |
input_image = gr.Image(height=230, width=230, label="Upload Image for Classification", type="pil")
|
| 168 |
-
|
| 169 |
# Output section
|
| 170 |
-
# Output section
|
| 171 |
with gr.Row():
|
| 172 |
with gr.Column():
|
| 173 |
label_output = gr.Label(label="Classification Results")
|
|
@@ -177,25 +172,24 @@ with gr.Blocks() as demo:
|
|
| 177 |
|
| 178 |
# Add example images using local paths
|
| 179 |
gr.Examples(
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
)
|
| 186 |
|
| 187 |
input_image.change(
|
| 188 |
fn=process_image,
|
| 189 |
inputs=input_image,
|
| 190 |
outputs=[label_output, generated_image, wiki_output, status_output] # ← UPDATED
|
| 191 |
-
)
|
| 192 |
|
| 193 |
input_image.clear(
|
| 194 |
fn=clear_outputs,
|
| 195 |
inputs=[],
|
| 196 |
outputs=[label_output, generated_image, wiki_output, status_output] # ← UPDATED
|
| 197 |
-
)
|
| 198 |
-
|
| 199 |
|
| 200 |
# Start the application
|
| 201 |
-
demo.launch(inline=False)
|
|
|
|
|
|
|
|
|
|
| 1 |
import fal_client
|
| 2 |
+
import gradio as gr
|
| 3 |
import io
|
| 4 |
+
import openai
|
| 5 |
+
import os
|
| 6 |
import random
|
| 7 |
import requests
|
| 8 |
+
from PIL import Image
|
| 9 |
+
from dotenv import load_dotenv
|
| 10 |
+
from fastai.vision.all import *
|
| 11 |
from pathlib import Path
|
|
|
|
|
|
|
| 12 |
|
| 13 |
# Dictionary of plant names and their Wikipedia links
|
| 14 |
search_terms_wikipedia = {
|
|
|
|
| 69 |
"goldfields coreopsis": "Varies by species; many not endangered."
|
| 70 |
}
|
| 71 |
|
| 72 |
+
|
| 73 |
+
def get_status(flower_name):
|
| 74 |
+
"""Return the endangerment status of a given flower name."""
|
| 75 |
+
return flowers_endangerment.get(flower_name, "Flower not found in database.")
|
| 76 |
+
|
| 77 |
+
|
| 78 |
# Templates for AI image generation
|
| 79 |
prompt_templates = [
|
| 80 |
"A dreamy watercolor scene of a {flower} on a misty morning trail, with golden sunbeams filtering through towering redwoods, and a curious hummingbird hovering nearby.",
|
|
|
|
| 91 |
str(Path('example_images/example_3.jpg')),
|
| 92 |
str(Path('example_images/example_4.jpg')),
|
| 93 |
str(Path('example_images/example_5.jpg'))
|
|
|
|
| 94 |
]
|
| 95 |
|
| 96 |
+
|
| 97 |
# Function to handle AI generation progress updates
|
| 98 |
def on_queue_update(update):
|
| 99 |
if isinstance(update, fal_client.InProgress):
|
| 100 |
for log in update.logs:
|
| 101 |
+
print(log["message"])
|
|
|
|
| 102 |
|
| 103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
# Main function to process the uploaded image
|
| 105 |
def process_image(img):
|
| 106 |
print("Starting prediction...")
|
| 107 |
predicted_class, _, probs = learn.predict(img)
|
| 108 |
print(f"Prediction complete: {predicted_class}")
|
| 109 |
+
|
| 110 |
classification_results = dict(zip(learn.dls.vocab, map(float, probs)))
|
| 111 |
+
|
| 112 |
# Get Wikipedia link
|
| 113 |
wiki_url = search_terms_wikipedia.get(predicted_class, "No Wikipedia entry found.")
|
| 114 |
+
|
| 115 |
# Get endangerment status
|
| 116 |
endangerment_status = get_status(predicted_class)
|
| 117 |
print(f"Status found: {endangerment_status}")
|
| 118 |
+
|
| 119 |
# Generate artistic interpretation using DALL-E
|
| 120 |
print("Sending request to DALL-E...")
|
| 121 |
try:
|
|
|
|
| 126 |
quality="standard",
|
| 127 |
n=1,
|
| 128 |
)
|
| 129 |
+
|
| 130 |
# Get the image URL
|
| 131 |
image_url = response.data[0].url
|
| 132 |
print(f"Image URL: {image_url}")
|
| 133 |
+
|
| 134 |
# Download the generated image
|
| 135 |
response = requests.get(image_url)
|
| 136 |
generated_image = Image.open(io.BytesIO(response.content))
|
| 137 |
+
|
| 138 |
except Exception as e:
|
| 139 |
print(f"Error generating image: {e}")
|
| 140 |
generated_image = None
|
| 141 |
+
|
| 142 |
print("Image retrieved and ready to return")
|
| 143 |
return classification_results, generated_image, wiki_url, endangerment_status
|
| 144 |
|
|
|
|
| 161 |
# Input section
|
| 162 |
with gr.Row():
|
| 163 |
input_image = gr.Image(height=230, width=230, label="Upload Image for Classification", type="pil")
|
| 164 |
+
|
| 165 |
# Output section
|
|
|
|
| 166 |
with gr.Row():
|
| 167 |
with gr.Column():
|
| 168 |
label_output = gr.Label(label="Classification Results")
|
|
|
|
| 172 |
|
| 173 |
# Add example images using local paths
|
| 174 |
gr.Examples(
|
| 175 |
+
examples=example_images,
|
| 176 |
+
inputs=input_image,
|
| 177 |
+
examples_per_page=6,
|
| 178 |
+
fn=process_image,
|
| 179 |
+
outputs=[label_output, generated_image, wiki_output, status_output] # ← UPDATED
|
| 180 |
+
)
|
| 181 |
|
| 182 |
input_image.change(
|
| 183 |
fn=process_image,
|
| 184 |
inputs=input_image,
|
| 185 |
outputs=[label_output, generated_image, wiki_output, status_output] # ← UPDATED
|
| 186 |
+
)
|
| 187 |
|
| 188 |
input_image.clear(
|
| 189 |
fn=clear_outputs,
|
| 190 |
inputs=[],
|
| 191 |
outputs=[label_output, generated_image, wiki_output, status_output] # ← UPDATED
|
| 192 |
+
)
|
|
|
|
| 193 |
|
| 194 |
# Start the application
|
| 195 |
+
demo.launch(inline=False)
|