Ely-testa commited on
Commit
e781192
·
verified ·
1 Parent(s): 2a867e9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -9
app.py CHANGED
@@ -1,24 +1,34 @@
1
  from fastai.vision.all import *
2
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
- im1 = PILImage.create('Brittlebush-Encelia-Farinosa-desert-horizon-nursery.jpg')
5
- im2 = PILImage.create('download.webp')
6
 
7
  learn = load_learner('export.pkl')
8
 
9
- pred_class,pred_idx,probabilities = learn.predict(im1)
10
- pred_class, pred_idx, probabilities
11
-
12
- pred_class,pred_idx,probabilities = learn.predict(im2)
13
- pred_class, pred_idx, probabilities
14
-
15
  categories = ('balsamroot', 'bladderpod', 'blazing star', 'bristlecone pine flowers', 'brittlebrush')
16
  def classify_image(img):
17
  pred, idx, probs = learn.predict(img)
18
  return dict(zip(categories, map(float, probs)))
19
 
20
 
21
- classify_image(im1), classify_image(im2)
22
 
23
  image=gr.Image(height = 192, width = 192)
24
  label = gr.Label()
 
1
  from fastai.vision.all import *
2
  import gradio as gr
3
+ from huggingface_hub import login
4
+ login()
5
+ import torch
6
+ from diffusers import FluxPipeline
7
+
8
+ pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
9
+ pipe.enable_model_cpu_offload() #save some VRAM by offloading the model to CPU. Remove this if you have enough GPU power
10
+
11
+ prompt = "A cat holding a sign that says hello world"
12
+ image = pipe(
13
+ prompt,
14
+ height=1024,
15
+ width=1024,
16
+ guidance_scale=3.5,
17
+ num_inference_steps=50,
18
+ max_sequence_length=512,
19
+ generator=torch.Generator("cpu").manual_seed(0)
20
+ ).images[0]
21
+ image.save("flux-dev.png")
22
 
 
 
23
 
24
  learn = load_learner('export.pkl')
25
 
 
 
 
 
 
 
26
  categories = ('balsamroot', 'bladderpod', 'blazing star', 'bristlecone pine flowers', 'brittlebrush')
27
  def classify_image(img):
28
  pred, idx, probs = learn.predict(img)
29
  return dict(zip(categories, map(float, probs)))
30
 
31
 
 
32
 
33
  image=gr.Image(height = 192, width = 192)
34
  label = gr.Label()