Ely-testa commited on
Commit
e8746a9
·
verified ·
1 Parent(s): 5006e92

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -0
app.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !pip install gradio
2
+
3
+ from fastai.vision.all import *
4
+ import gradio as gr
5
+
6
+ #im1 = PILImage.create('/kaggle/input/flowersdata/balsamroot/02d06c11-5738-47f0-bfaf-af79eb1d4405.jpg')
7
+ #im2 = PILImage.create('/kaggle/input/flowersdata/brittlebrush/ed0dc07f-49b3-48f0-9663-aefee1d3096b.jpg')
8
+
9
+ learn = load_learner('/kaggle/input/save-your-neural-network-as-a-pkl-file/export.pkl')
10
+
11
+ pred_class,pred_idx,probabilities = learn.predict(im1)
12
+ pred_class, pred_idx, probabilities
13
+
14
+ pred_class,pred_idx,probabilities = learn.predict(im2)
15
+ pred_class, pred_idx, probabilities
16
+
17
+ categories = ('balsamroot', 'bladderpod', 'blazing star', 'bristlecone pine flowers', 'brittlebrush')
18
+ def classify_image(img):
19
+ pred, idx, probs = learn.predict(img)
20
+ return dict(zip(categories, map(float, probs)))
21
+
22
+
23
+ classify_image(im1), classify_image(im2)
24
+
25
+ image=gr.Image(height = 192, width = 192)
26
+ label = gr.Label()
27
+ #examples = ['/kaggle/input/example-images/Ronan_Grizzly_Bear_1.jpg','/kaggle/input/example-images/blackbear.jpg',
28
+ '/kaggle/input/example-images/blackbear2.jpg','/kaggle/input/example-images/brownbear.jpg',
29
+ '/kaggle/input/example-images/polar.jpg']
30
+ intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
31
+ intf.launch(inline=False)
32
+