from fastai.vision.all import * import gradio as gr import torch from diffusers import FluxPipeline from huggingface_hub import login login() pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) #pipe.enable_model_cpu_offload() #save some VRAM by offloading the model to CPU. Remove this if you have enough GPU power prompt = "A cat holding a sign that says hello world" image = pipe( prompt, height=1024, width=1024, guidance_scale=3.5, num_inference_steps=50, max_sequence_length=512, generator=torch.Generator("cpu").manual_seed(0) ).images[0] image.save("flux-dev.png") learn = load_learner('export.pkl') categories = ('balsamroot', 'bladderpod', 'blazing star', 'bristlecone pine flowers', 'brittlebrush') def classify_image(img): pred, idx, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) image=gr.Image(height = 192, width = 192) label = gr.Label() examples = ['https://www.deserthorizonnursery.com/wp-content/uploads/2024/03/Brittlebush-Encelia-Farinosa-desert-horizon-nursery.jpg','https://cdn.mos.cms.futurecdn.net/VJE7gSuQ9KWbkqEsWgX5zS.jpg'] intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) intf.launch(inline=False)