Fix typing and linting
Browse files
app.py
CHANGED
|
@@ -41,32 +41,38 @@ def visualize(df_pairwise: pd.DataFrame) -> Figure:
|
|
| 41 |
return fig
|
| 42 |
|
| 43 |
|
| 44 |
-
def counting(xs:
|
|
|
|
| 45 |
result = evalica.counting(xs, ys, ws)
|
| 46 |
return result.scores, result.index
|
| 47 |
|
| 48 |
|
| 49 |
-
def bradley_terry(xs:
|
|
|
|
| 50 |
result = evalica.bradley_terry(xs, ys, ws, tolerance=TOLERANCE, limit=LIMIT)
|
| 51 |
return result.scores, result.index
|
| 52 |
|
| 53 |
|
| 54 |
-
def elo(xs:
|
|
|
|
| 55 |
result = evalica.elo(xs, ys, ws)
|
| 56 |
return result.scores, result.index
|
| 57 |
|
| 58 |
|
| 59 |
-
def eigen(xs:
|
|
|
|
| 60 |
result = evalica.eigen(xs, ys, ws, tolerance=TOLERANCE, limit=LIMIT)
|
| 61 |
return result.scores, result.index
|
| 62 |
|
| 63 |
|
| 64 |
-
def pagerank(xs:
|
|
|
|
| 65 |
result = evalica.pagerank(xs, ys, ws, tolerance=TOLERANCE, limit=LIMIT)
|
| 66 |
return result.scores, result.index
|
| 67 |
|
| 68 |
|
| 69 |
-
def newman(xs:
|
|
|
|
| 70 |
result = evalica.newman(xs, ys, ws, tolerance=TOLERANCE, limit=LIMIT)
|
| 71 |
return result.scores, result.index
|
| 72 |
|
|
@@ -115,12 +121,12 @@ def handler(
|
|
| 115 |
|
| 116 |
df_pairs = df_pairs[["left", "right", "winner"]]
|
| 117 |
|
| 118 |
-
df_pairs.dropna(axis=0
|
| 119 |
|
| 120 |
if filtered:
|
| 121 |
largest = largest_strongly_connected_component(df_pairs)
|
| 122 |
|
| 123 |
-
df_pairs.drop(df_pairs[~(df_pairs["left"].isin(largest) & df_pairs["right"].isin(largest))].index
|
| 124 |
|
| 125 |
xs, ys = df_pairs["left"], df_pairs["right"]
|
| 126 |
ws = df_pairs["winner"].map({"left": Winner.X, "right": Winner.Y, "tie": Winner.Draw})
|
|
@@ -138,9 +144,9 @@ def handler(
|
|
| 138 |
|
| 139 |
df_result["rank"] = df_result["score"].rank(na_option="bottom", ascending=False).astype(int)
|
| 140 |
|
| 141 |
-
df_result.fillna(-np.inf
|
| 142 |
-
df_result.sort_values(by=["rank", "score"], ascending=[True, False]
|
| 143 |
-
df_result.reset_index(
|
| 144 |
|
| 145 |
if truncated:
|
| 146 |
df_result = pd.concat((df_result.head(5), df_result.tail(5)), copy=False)
|
|
|
|
| 41 |
return fig
|
| 42 |
|
| 43 |
|
| 44 |
+
def counting(xs: "pd.Series[str]", ys: "pd.Series[str]",
|
| 45 |
+
ws: "pd.Series[Winner]") -> tuple["pd.Series[str]", "pd.Index[str]"]: # type: ignore[type-var]
|
| 46 |
result = evalica.counting(xs, ys, ws)
|
| 47 |
return result.scores, result.index
|
| 48 |
|
| 49 |
|
| 50 |
+
def bradley_terry(xs: "pd.Series[str]", ys: "pd.Series[str]",
|
| 51 |
+
ws: "pd.Series[Winner]") -> tuple["pd.Series[str]", "pd.Index[str]"]: # type: ignore[type-var]
|
| 52 |
result = evalica.bradley_terry(xs, ys, ws, tolerance=TOLERANCE, limit=LIMIT)
|
| 53 |
return result.scores, result.index
|
| 54 |
|
| 55 |
|
| 56 |
+
def elo(xs: "pd.Series[str]", ys: "pd.Series[str]",
|
| 57 |
+
ws: "pd.Series[Winner]") -> tuple["pd.Series[str]", "pd.Index[str]"]: # type: ignore[type-var]
|
| 58 |
result = evalica.elo(xs, ys, ws)
|
| 59 |
return result.scores, result.index
|
| 60 |
|
| 61 |
|
| 62 |
+
def eigen(xs: "pd.Series[str]", ys: "pd.Series[str]",
|
| 63 |
+
ws: "pd.Series[Winner]") -> tuple["pd.Series[str]", "pd.Index[str]"]: # type: ignore[type-var]
|
| 64 |
result = evalica.eigen(xs, ys, ws, tolerance=TOLERANCE, limit=LIMIT)
|
| 65 |
return result.scores, result.index
|
| 66 |
|
| 67 |
|
| 68 |
+
def pagerank(xs: "pd.Series[str]", ys: "pd.Series[str]",
|
| 69 |
+
ws: "pd.Series[Winner]") -> tuple["pd.Series[str]", "pd.Index[str]"]: # type: ignore[type-var]
|
| 70 |
result = evalica.pagerank(xs, ys, ws, tolerance=TOLERANCE, limit=LIMIT)
|
| 71 |
return result.scores, result.index
|
| 72 |
|
| 73 |
|
| 74 |
+
def newman(xs: "pd.Series[str]", ys: "pd.Series[str]",
|
| 75 |
+
ws: "pd.Series[Winner]") -> tuple["pd.Series[str]", "pd.Index[str]"]: # type: ignore[type-var]
|
| 76 |
result = evalica.newman(xs, ys, ws, tolerance=TOLERANCE, limit=LIMIT)
|
| 77 |
return result.scores, result.index
|
| 78 |
|
|
|
|
| 121 |
|
| 122 |
df_pairs = df_pairs[["left", "right", "winner"]]
|
| 123 |
|
| 124 |
+
df_pairs = df_pairs.dropna(axis=0)
|
| 125 |
|
| 126 |
if filtered:
|
| 127 |
largest = largest_strongly_connected_component(df_pairs)
|
| 128 |
|
| 129 |
+
df_pairs = df_pairs.drop(df_pairs[~(df_pairs["left"].isin(largest) & df_pairs["right"].isin(largest))].index)
|
| 130 |
|
| 131 |
xs, ys = df_pairs["left"], df_pairs["right"]
|
| 132 |
ws = df_pairs["winner"].map({"left": Winner.X, "right": Winner.Y, "tie": Winner.Draw})
|
|
|
|
| 144 |
|
| 145 |
df_result["rank"] = df_result["score"].rank(na_option="bottom", ascending=False).astype(int)
|
| 146 |
|
| 147 |
+
df_result = df_result.fillna(-np.inf)
|
| 148 |
+
df_result = df_result.sort_values(by=["rank", "score"], ascending=[True, False])
|
| 149 |
+
df_result = df_result.reset_index()
|
| 150 |
|
| 151 |
if truncated:
|
| 152 |
df_result = pd.concat((df_result.head(5), df_result.tail(5)), copy=False)
|
ruff.toml
CHANGED
|
@@ -9,6 +9,5 @@ ignore = [
|
|
| 9 |
"EM102", # f-string-in-exception
|
| 10 |
"FBT001", # boolean-type-hint-positional-argument
|
| 11 |
"N806", # non-lowercase-variable-in-function
|
| 12 |
-
"PD002", # pandas-use-of-inplace-argument
|
| 13 |
"TRY003", # raise-vanilla-args
|
| 14 |
]
|
|
|
|
| 9 |
"EM102", # f-string-in-exception
|
| 10 |
"FBT001", # boolean-type-hint-positional-argument
|
| 11 |
"N806", # non-lowercase-variable-in-function
|
|
|
|
| 12 |
"TRY003", # raise-vanilla-args
|
| 13 |
]
|