Add app.py
Browse files
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
-
title: Watset
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: yellow
|
| 5 |
colorTo: purple
|
| 6 |
sdk: gradio
|
|
@@ -10,4 +10,6 @@ pinned: false
|
|
| 10 |
license: apache-2.0
|
| 11 |
---
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Structure Discovery with Watset
|
| 3 |
+
emoji: 🔮
|
| 4 |
colorFrom: yellow
|
| 5 |
colorTo: purple
|
| 6 |
sdk: gradio
|
|
|
|
| 10 |
license: apache-2.0
|
| 11 |
---
|
| 12 |
|
| 13 |
+
**Watset** is a soft clustering algorithm for graphs as described in paper
|
| 14 |
+
[Watset: Local-Global Graph Clustering with Applications in Sense and Frame Induction](https://doi.org/10.1162/COLI_a_00354)
|
| 15 |
+
([arXiv](https://arxiv.org/abs/1808.06696)).
|
app.py
ADDED
|
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 Dmitry Ustalov
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
__author__ = 'Dmitry Ustalov'
|
| 16 |
+
__license__ = 'Apache 2.0'
|
| 17 |
+
|
| 18 |
+
import csv
|
| 19 |
+
import re
|
| 20 |
+
import subprocess
|
| 21 |
+
from dataclasses import dataclass
|
| 22 |
+
from tempfile import NamedTemporaryFile
|
| 23 |
+
from typing import Dict, IO, List, cast, Tuple, Optional
|
| 24 |
+
|
| 25 |
+
import gradio as gr
|
| 26 |
+
import matplotlib.pyplot as plt
|
| 27 |
+
import networkx as nx
|
| 28 |
+
import pandas as pd
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
@dataclass
|
| 32 |
+
class Algorithm:
|
| 33 |
+
name: str
|
| 34 |
+
mode: Optional[str] = None
|
| 35 |
+
local_name: Optional[str] = None
|
| 36 |
+
local_params: Optional[str] = None
|
| 37 |
+
global_name: Optional[str] = None
|
| 38 |
+
global_params: Optional[str] = None
|
| 39 |
+
|
| 40 |
+
def args_clustering(self) -> List[str]:
|
| 41 |
+
args = [self.name]
|
| 42 |
+
|
| 43 |
+
if self.mode:
|
| 44 |
+
args.extend(['--mode', self.mode])
|
| 45 |
+
|
| 46 |
+
args.extend(self.args_graph())
|
| 47 |
+
|
| 48 |
+
if self.global_name:
|
| 49 |
+
args.extend(['--global', self.global_name])
|
| 50 |
+
|
| 51 |
+
if self.global_params:
|
| 52 |
+
args.extend(['--global-params', self.global_params])
|
| 53 |
+
|
| 54 |
+
return args
|
| 55 |
+
|
| 56 |
+
def args_graph(self) -> List[str]:
|
| 57 |
+
args = []
|
| 58 |
+
|
| 59 |
+
if self.local_name:
|
| 60 |
+
args.extend(['--local', self.local_name])
|
| 61 |
+
|
| 62 |
+
if self.local_params:
|
| 63 |
+
args.extend(['--local-params', self.local_params])
|
| 64 |
+
|
| 65 |
+
return args
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
ALGORITHMS: Dict[str, Algorithm] = {
|
| 69 |
+
'Watset[CW_top, CW_top]': Algorithm('watset', None, 'cw', 'mode=top', 'cw', 'mode=top'),
|
| 70 |
+
'Watset[CW_lin, CW_top]': Algorithm('watset', None, 'cw', 'mode=lin', 'cw', 'mode=top'),
|
| 71 |
+
'Watset[CW_log, CW_top]': Algorithm('watset', None, 'cw', 'mode=log', 'cw', 'mode=top'),
|
| 72 |
+
'Watset[MCL, CW_top]': Algorithm('watset', None, 'mcl', None, 'cw', 'mode=top'),
|
| 73 |
+
'Watset[CW_top, CW_lin]': Algorithm('watset', None, 'cw', 'mode=top', 'cw', 'mode=lin'),
|
| 74 |
+
'Watset[CW_lin, CW_lin]': Algorithm('watset', None, 'cw', 'mode=lin', 'cw', 'mode=lin'),
|
| 75 |
+
'Watset[CW_log, CW_lin]': Algorithm('watset', None, 'cw', 'mode=log', 'cw', 'mode=lin'),
|
| 76 |
+
'Watset[MCL, CW_lin]': Algorithm('watset', None, 'mcl', None, 'cw', 'mode=lin'),
|
| 77 |
+
'Watset[CW_top, CW_log]': Algorithm('watset', None, 'cw', 'mode=top', 'cw', 'mode=log'),
|
| 78 |
+
'Watset[CW_lin, CW_log]': Algorithm('watset', None, 'cw', 'mode=lin', 'cw', 'mode=log'),
|
| 79 |
+
'Watset[CW_log, CW_log]': Algorithm('watset', None, 'cw', 'mode=log', 'cw', 'mode=log'),
|
| 80 |
+
'Watset[MCL, CW_log]': Algorithm('watset', None, 'mcl', None, 'cw', 'mode=log'),
|
| 81 |
+
'CW_top': Algorithm('cw', 'top'),
|
| 82 |
+
'CW_lin': Algorithm('cw', 'lin'),
|
| 83 |
+
'CW_log': Algorithm('cw', 'log'),
|
| 84 |
+
'MaxMax': Algorithm('maxmax')
|
| 85 |
+
}
|
| 86 |
+
|
| 87 |
+
SENSE = re.compile(r'^(?P<item>\d+)#(?P<sense>\d+)$')
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def visualize(G: nx.Graph, seed: int = 0) -> plt.Figure:
|
| 91 |
+
pos = nx.spring_layout(G, seed=seed)
|
| 92 |
+
|
| 93 |
+
fig = plt.figure(dpi=240)
|
| 94 |
+
plt.axis('off')
|
| 95 |
+
nx.draw_networkx_edges(G, pos, alpha=.15)
|
| 96 |
+
nx.draw_networkx_labels(G, pos)
|
| 97 |
+
|
| 98 |
+
return fig
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def watset(G: nx.Graph, algorithm: str, seed: int = 0,
|
| 102 |
+
jar: str = 'watset.jar', timeout: int = 10) -> Tuple[pd.DataFrame, Optional[nx.Graph]]:
|
| 103 |
+
with (NamedTemporaryFile() as graph,
|
| 104 |
+
NamedTemporaryFile(mode='rb') as clusters,
|
| 105 |
+
NamedTemporaryFile(mode='rb') as senses):
|
| 106 |
+
nx.write_edgelist(G, graph.name, delimiter='\t', data=['weight'])
|
| 107 |
+
|
| 108 |
+
try:
|
| 109 |
+
result = subprocess.run(['java', '-jar', jar,
|
| 110 |
+
'--input', graph.name, '--output', clusters.name, '--seed', str(seed),
|
| 111 |
+
*ALGORITHMS[algorithm].args_clustering()],
|
| 112 |
+
capture_output=True, text=True, timeout=timeout)
|
| 113 |
+
|
| 114 |
+
if result.returncode != 0:
|
| 115 |
+
raise gr.Error(f'Backend error (code {result.returncode}): {result.stderr}')
|
| 116 |
+
except subprocess.SubprocessError as e:
|
| 117 |
+
raise gr.Error(f'Backend error: {e}')
|
| 118 |
+
|
| 119 |
+
df_clusters = pd.read_csv(clusters, sep='\t', names=('cluster', 'size', 'items'),
|
| 120 |
+
dtype={'cluster': int, 'size': int, 'items': str})
|
| 121 |
+
|
| 122 |
+
df_clusters['items'] = df_clusters['items'].str.split(', ')
|
| 123 |
+
|
| 124 |
+
if ALGORITHMS[algorithm].name == 'watset':
|
| 125 |
+
try:
|
| 126 |
+
result = subprocess.run(['java', '-jar', jar,
|
| 127 |
+
'--input', graph.name, '--output', senses.name, '--seed', str(seed),
|
| 128 |
+
'graph', *ALGORITHMS[algorithm].args_graph()],
|
| 129 |
+
capture_output=True, text=True, timeout=timeout)
|
| 130 |
+
|
| 131 |
+
if result.returncode != 0:
|
| 132 |
+
raise gr.Error(f'Backend error (code {result.returncode}): {result.stderr}')
|
| 133 |
+
except subprocess.SubprocessError as e:
|
| 134 |
+
raise gr.Error(f'Backend error: {e}')
|
| 135 |
+
|
| 136 |
+
G_senses = nx.read_edgelist(senses.name, delimiter='\t', comments='\n', data=[('weight', float)])
|
| 137 |
+
|
| 138 |
+
return df_clusters, G_senses
|
| 139 |
+
|
| 140 |
+
return df_clusters, None
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def handler(file: IO[bytes], algorithm: str, seed: int) -> Tuple[pd.DataFrame, plt.Figure]:
|
| 144 |
+
if file is None:
|
| 145 |
+
raise gr.Error('File must be uploaded')
|
| 146 |
+
|
| 147 |
+
if algorithm not in ALGORITHMS:
|
| 148 |
+
raise gr.Error(f'Unknown algorithm: {algorithm}')
|
| 149 |
+
|
| 150 |
+
with open(file.name) as f:
|
| 151 |
+
try:
|
| 152 |
+
dialect = csv.Sniffer().sniff(f.readline(4096))
|
| 153 |
+
delimiter = dialect.delimiter
|
| 154 |
+
except csv.Error:
|
| 155 |
+
delimiter = ','
|
| 156 |
+
|
| 157 |
+
G: nx.Graph = nx.read_edgelist(file.name, delimiter=delimiter, comments='\n', data=[('weight', float)])
|
| 158 |
+
|
| 159 |
+
mapping, reverse = {}, {}
|
| 160 |
+
|
| 161 |
+
for i, node in enumerate(G):
|
| 162 |
+
mapping[node] = i
|
| 163 |
+
reverse[i] = node
|
| 164 |
+
|
| 165 |
+
nx.relabel_nodes(G, mapping, copy=False)
|
| 166 |
+
|
| 167 |
+
df_clusters, G_senses = watset(G, algorithm=algorithm, seed=seed)
|
| 168 |
+
|
| 169 |
+
nx.relabel_nodes(G, reverse, copy=False)
|
| 170 |
+
|
| 171 |
+
df_clusters['items'] = df_clusters['items'].apply(lambda items: sorted(reverse[int(item)] for item in items))
|
| 172 |
+
|
| 173 |
+
if G_senses is None:
|
| 174 |
+
fig = visualize(G, seed=seed)
|
| 175 |
+
else:
|
| 176 |
+
sense_mapping = {node: f'{reverse[int(match["item"])]}#{match["sense"]}' # type: ignore
|
| 177 |
+
for node in G_senses for match in (SENSE.match(node),)}
|
| 178 |
+
|
| 179 |
+
nx.relabel_nodes(G_senses, sense_mapping, copy=False)
|
| 180 |
+
|
| 181 |
+
fig = visualize(G_senses, seed=seed)
|
| 182 |
+
|
| 183 |
+
return df_clusters, fig
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
def main() -> None:
|
| 187 |
+
iface = gr.Interface(
|
| 188 |
+
fn=handler,
|
| 189 |
+
inputs=[
|
| 190 |
+
gr.File(
|
| 191 |
+
value='java.tsv',
|
| 192 |
+
file_types=['.tsv', '.csv'],
|
| 193 |
+
label='Graph'
|
| 194 |
+
),
|
| 195 |
+
gr.Dropdown(
|
| 196 |
+
choices=cast(List[str], ALGORITHMS),
|
| 197 |
+
value='Watset[MCL, CW_lin]',
|
| 198 |
+
label='Algorithm'
|
| 199 |
+
),
|
| 200 |
+
gr.Number(
|
| 201 |
+
label='Seed',
|
| 202 |
+
precision=0
|
| 203 |
+
)
|
| 204 |
+
],
|
| 205 |
+
outputs=[
|
| 206 |
+
gr.Dataframe(
|
| 207 |
+
headers=['cluster', 'size', 'items'],
|
| 208 |
+
label='Clustering'
|
| 209 |
+
),
|
| 210 |
+
gr.Plot(
|
| 211 |
+
label='Graph'
|
| 212 |
+
)
|
| 213 |
+
],
|
| 214 |
+
title='Structure Discovery with Watset',
|
| 215 |
+
description='''
|
| 216 |
+
**Watset** is a powerful algorithm for structure discovery in graphs.
|
| 217 |
+
|
| 218 |
+
By capturing the ambiguity of nodes in a graph, Watset efficiently finds clusters in the input data.
|
| 219 |
+
|
| 220 |
+
Whether you're working with linguistic data or other networks, Watset is the go-to solution for unlocking hidden patterns and structures.
|
| 221 |
+
''',
|
| 222 |
+
article='''
|
| 223 |
+
**More Watset:**
|
| 224 |
+
|
| 225 |
+
- Paper: <https://doi.org/10.1162/COLI_a_00354> ([arXiv](https://arxiv.org/abs/1808.06696))
|
| 226 |
+
- Implementation: <https://github.com/nlpub/watset-java>
|
| 227 |
+
- Maven Central: <https://search.maven.org/artifact/org.nlpub/watset>
|
| 228 |
+
- conda-forge: <https://anaconda.org/conda-forge/watset>
|
| 229 |
+
''',
|
| 230 |
+
allow_flagging='never'
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
iface.launch()
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
if __name__ == '__main__':
|
| 237 |
+
main()
|