Spaces:
Runtime error
Runtime error
| import functools | |
| import re | |
| import PIL.Image | |
| import gradio as gr | |
| import jax | |
| import jax.numpy as jnp | |
| import numpy as np | |
| import flax.linen as nn | |
| from inference import PaliGemmaModel, VAEModel | |
| COLORS = ['#4285f4', '#db4437', '#f4b400', '#0f9d58', '#e48ef1'] | |
| # Instantiate the models | |
| pali_gemma_model = PaliGemmaModel() | |
| vae_model = VAEModel('vae-oid.npz') | |
| ##### Parse segmentation output tokens into masks | |
| ##### Also returns bounding boxes with their labels | |
| def parse_segmentation(input_image, input_text, max_new_tokens=100): | |
| out = pali_gemma_model.infer(image=input_image, text=input_text, max_new_tokens=max_new_tokens) | |
| objs = extract_objs(out.lstrip("\n"), input_image.size[0], input_image.size[1], unique_labels=True) | |
| labels = set(obj.get('name') for obj in objs if obj.get('name')) | |
| color_map = {l: COLORS[i % len(COLORS)] for i, l in enumerate(labels)} | |
| highlighted_text = [(obj['content'], obj.get('name')) for obj in objs] | |
| annotated_img = ( | |
| input_image, | |
| [ | |
| ( | |
| obj['mask'] if obj.get('mask') is not None else obj['xyxy'], | |
| obj['name'] or '', | |
| ) | |
| for obj in objs | |
| if 'mask' in obj or 'xyxy' in obj | |
| ], | |
| ) | |
| has_annotations = bool(annotated_img[1]) | |
| return annotated_img | |
| INTRO_TEXT = "🔬🧠 CellVision AI -- Intelligent Cell Imaging Analysis 🤖🧫" | |
| IMAGE_PROMPT = """ | |
| Describe the morphological characteristics and visible interactions between different cell types. | |
| Assess the biological context to identify signs of cancer and the presence of antigens. | |
| """ | |
| def extract_objs(text, width, height, unique_labels=False): | |
| """Returns objs for a string with "<loc>" and "<seg>" tokens.""" | |
| objs = [] | |
| seen = set() | |
| while text: | |
| m = _SEGMENT_DETECT_RE.match(text) | |
| if not m: | |
| break | |
| print("m", m) | |
| gs = list(m.groups()) | |
| before = gs.pop(0) | |
| name = gs.pop() | |
| y1, x1, y2, x2 = [int(x) / 1024 for x in gs[:4]] | |
| y1, x1, y2, x2 = map(round, (y1 * height, x1 * width, y2 * height, x2 * width)) | |
| seg_indices = gs[4:20] | |
| if seg_indices[0] is None: | |
| mask = None | |
| else: | |
| seg_indices = np.array([int(x) for x in seg_indices], dtype=np.int32) | |
| m64, = vae_model.reconstruct_masks(seg_indices[None])[..., 0] | |
| m64 = np.clip(np.array(m64) * 0.5 + 0.5, 0, 1) | |
| m64 = PIL.Image.fromarray((m64 * 255).astype('uint8')) | |
| mask = np.zeros([height, width]) | |
| if y2 > y1 and x2 > x1: | |
| mask[y1:y2, x1:x2] = np.array(m64.resize([x2 - x1, y2 - y1])) / 255.0 | |
| content = m.group() | |
| if before: | |
| objs.append(dict(content=before)) | |
| content = content[len(before):] | |
| while unique_labels and name in seen: | |
| name = (name or '') + "'" | |
| seen.add(name) | |
| objs.append(dict( | |
| content=content, xyxy=(x1, y1, x2, y2), mask=mask, name=name)) | |
| text = text[len(before) + len(content):] | |
| if text: | |
| objs.append(dict(content=text)) | |
| return objs | |
| _SEGMENT_DETECT_RE = re.compile( | |
| r'(.*?)' + | |
| r'<loc(\d{4})>' * 4 + r'\s*' + | |
| '(?:%s)?' % (r'<seg(\d{3})>' * 16) + | |
| r'\s*([^;<>]+)? ?(?:; )?', | |
| ) | |
| with gr.Blocks(css="style.css") as demo: | |
| gr.Markdown(INTRO_TEXT) | |
| with gr.Tab("Segment/Detect"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| image = gr.Image(type="pil") | |
| seg_input = gr.Text(label="Entities to Segment/Detect") | |
| with gr.Column(): | |
| annotated_image = gr.AnnotatedImage(label="Output") | |
| seg_btn = gr.Button("Submit") | |
| examples = [ | |
| ["./examples/cart1.jpg", "segment cells"], | |
| ["./examples/cart1.jpg", "detect cells"], | |
| ["./examples/cart2.jpg", "segment cells"], | |
| ["./examples/cart2.jpg", "detect cells"], | |
| ["./examples/cart3.jpg", "segment cells"], | |
| ["./examples/cart3.jpg", "detect cells"] | |
| ] | |
| gr.Examples( | |
| examples=examples, | |
| inputs=[image, seg_input], | |
| ) | |
| seg_inputs = [ | |
| image, | |
| seg_input, | |
| ] | |
| seg_outputs = [ | |
| annotated_image | |
| ] | |
| seg_btn.click( | |
| fn=parse_segmentation, | |
| inputs=seg_inputs, | |
| outputs=seg_outputs, | |
| ) | |
| with gr.Tab("Text Generation"): | |
| with gr.Column(): | |
| image = gr.Image(type="pil") | |
| text_input = gr.Text(label="Input Text") | |
| text_output = gr.Text(label="Text Output") | |
| chat_btn = gr.Button() | |
| tokens = gr.Slider( | |
| label="Max New Tokens", | |
| info="Set to larger for longer generation.", | |
| minimum=10, | |
| maximum=100, | |
| value=50, | |
| step=10, | |
| ) | |
| chat_inputs = [ | |
| image, | |
| text_input, | |
| tokens | |
| ] | |
| chat_outputs = [ | |
| text_output | |
| ] | |
| chat_btn.click( | |
| fn=pali_gemma_model.infer, | |
| inputs=chat_inputs, | |
| outputs=chat_outputs, | |
| ) | |
| examples = [ | |
| ["./examples/cart1.jpg", IMAGE_PROMPT], | |
| ["./examples/cart2.jpg", IMAGE_PROMPT], | |
| ["./examples/cart3.jpg", IMAGE_PROMPT] | |
| ] | |
| gr.Examples( | |
| examples=examples, | |
| inputs=chat_inputs, | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=10).launch(debug=True) | |