Spaces:
Runtime error
Runtime error
| import os | |
| import time | |
| import gradio as gr | |
| from typing import * | |
| from pillow_heif import register_heif_opener | |
| register_heif_opener() | |
| import vision_agent as va | |
| from vision_agent.tools import register_tool | |
| from vision_agent.tools import load_image, owl_v2, overlay_bounding_boxes, save_image | |
| from huggingface_hub import login | |
| import spaces | |
| # Perform login using the token | |
| hf_token = os.getenv("HF_TOKEN") | |
| login(token=hf_token, add_to_git_credential=True) | |
| def detect_brain_tumor(image, debug: bool = False) -> str: | |
| """ | |
| Detects a brain tumor in the given image and saves the image with bounding boxes. | |
| Parameters: | |
| image: The input image (as provided by Gradio). | |
| debug (bool): Flag to enable logging for debugging purposes. | |
| Returns: | |
| str: Path to the saved output image. | |
| """ | |
| # Generate a unique output filename | |
| output_path = f"./output/tumor_detection_{int(time.time())}.jpg" | |
| if debug: | |
| print(f"Image received") | |
| # Step 2: Detect brain tumor using owl_v2 | |
| prompt = "detect brain tumor" | |
| detections = owl_v2(prompt, image) | |
| if debug: | |
| print(f"Detections: {detections}") | |
| # Step 3: Overlay bounding boxes on the image | |
| image_with_bboxes = overlay_bounding_boxes(image, detections) | |
| if debug: | |
| print("Bounding boxes overlaid on the image") | |
| # Step 4: Save the resulting image | |
| save_image(image_with_bboxes, output_path) | |
| if debug: | |
| print(f"Image saved to {output_path}") | |
| return output_path | |
| INTRO_TEXT="# π¬π§ CellVision AI -- Intelligent Cell Imaging Analysis π€π§«" | |
| IMAGE_PROMPT="Are these cells healthy or cancerous?" | |
| with gr.Blocks(css="style.css") as demo: | |
| gr.Markdown(INTRO_TEXT) | |
| with gr.Tab("Segment/Detect"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| image = gr.Image(type="pil") | |
| seg_input = gr.Text(label="Entities to Segment/Detect") | |
| with gr.Column(): | |
| annotated_image = gr.AnnotatedImage(label="Output") | |
| seg_btn = gr.Button("Submit") | |
| examples = [["./examples/194_jpg.rf.3e3dd592d034bb5ee27a978553819f42.jpg", "detect brain tumor"], | |
| ["./examples/239_jpg.rf.3dcc0799277fb78a2ab21db7761ccaeb.jpg", "detect brain tumor"], | |
| ["./examples/1385_jpg.rf.3c67cb92e2922dba0e6dba86f69df40b.jpg", "detect brain tumor"], | |
| ["./examples/1491_jpg.rf.3c658e83538de0fa5a3f4e13d7d85f12.jpg", "detect brain tumor"], | |
| ["./examples/1550_jpg.rf.3d067be9580ec32dbee5a89c675d8459.jpg", "detect brain tumor"], | |
| ["./examples/2256_jpg.rf.3afd7903eaf3f3c5aa8da4bbb928bc19.jpg", "detect brain tumor"], | |
| ["./examples/2871_jpg.rf.3b6eadfbb369abc2b3bcb52b406b74f2.jpg", "detect brain tumor"], | |
| ["./examples/2921_jpg.rf.3b952f91f27a6248091e7601c22323ad.jpg", "detect brain tumor"], | |
| ] | |
| gr.Examples( | |
| examples=examples, | |
| inputs=[image, seg_input], | |
| ) | |
| seg_inputs = [ | |
| image, | |
| seg_input | |
| ] | |
| seg_outputs = [ | |
| annotated_image | |
| ] | |
| seg_btn.click( | |
| fn=detect_brain_tumor, | |
| inputs=seg_inputs, | |
| outputs=seg_outputs, | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=10).launch(debug=True) |