Spaces:
Runtime error
Runtime error
Update README.md
Browse files
README.md
CHANGED
|
@@ -10,4 +10,269 @@ pinned: false
|
|
| 10 |
license: openrail
|
| 11 |
---
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
license: openrail
|
| 11 |
---
|
| 12 |
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
## Creating instructions
|
| 16 |
+
|
| 17 |
+
- Load the image from the given file path '/home/user/tmp9873xen5.jpg'.
|
| 18 |
+
- Use the 'owl_v2' tool to detect brain tumors in the image. The prompt should be 'brain tumor'.
|
| 19 |
+
- Use the 'grounding_sam' tool to segment brain tumors in the image. The prompt should be 'brain tumor'.
|
| 20 |
+
- Overlay the bounding boxes from the detection results on the original image using the 'overlay_bounding_boxes' utility.
|
| 21 |
+
- Overlay the segmentation masks from the segmentation results on the original image using the 'overlay_segmentation_masks' utility.
|
| 22 |
+
- Save the final image with both bounding boxes and segmentation masks to a specified output path.
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
## Retrieving tools
|
| 26 |
+
|
| 27 |
+
- 'load_image' is a utility function that loads an image from the given file path string.
|
| 28 |
+
'save_image' is a utility function that saves an image to a file path.
|
| 29 |
+
- 'owl_v2' is a tool that can detect and count multiple objects given a text prompt such as category names or referring expressions. The categories in text prompt are separated by commas. It returns a list of bounding boxes with normalized coordinates, label names and associated probability scores.
|
| 30 |
+
- 'florencev2_object_detection' is a tool that can detect common objects in an image without any text prompt or thresholding. It returns a list of detected objects as labels and their location as bounding boxes.
|
| 31 |
+
- 'grounding_sam' is a tool that can segment multiple objects given a text prompt such as category names or referring expressions. The categories in text prompt are separated by commas or periods. It returns a list of bounding boxes, label names, mask file names and associated probability scores.
|
| 32 |
+
- 'detr_segmentation' is a tool that can segment common objects in an image without any text prompt. It returns a list of detected objects as labels, their regions as masks and their scores.
|
| 33 |
+
- 'overlay_bounding_boxes' is a utility function that displays bounding boxes on an image.
|
| 34 |
+
- 'overlay_heat_map' is a utility function that displays a heat map on an image.
|
| 35 |
+
- 'overlay_segmentation_masks' is a utility function that displays segmentation masks.
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
### Retrieving tools - detailed notes on tool selection
|
| 39 |
+
|
| 40 |
+
load_image(image_path: str) -> numpy.ndarray:
|
| 41 |
+
'load_image' is a utility function that loads an image from the given file path string.
|
| 42 |
+
|
| 43 |
+
Parameters:
|
| 44 |
+
image_path (str): The path to the image.
|
| 45 |
+
|
| 46 |
+
Returns:
|
| 47 |
+
np.ndarray: The image as a NumPy array.
|
| 48 |
+
|
| 49 |
+
Example
|
| 50 |
+
-------
|
| 51 |
+
>>> load_image("path/to/image.jpg")
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
save_image(image: numpy.ndarray, file_path: str) -> None:
|
| 55 |
+
'save_image' is a utility function that saves an image to a file path.
|
| 56 |
+
|
| 57 |
+
Parameters:
|
| 58 |
+
image (np.ndarray): The image to save.
|
| 59 |
+
file_path (str): The path to save the image file.
|
| 60 |
+
|
| 61 |
+
Example
|
| 62 |
+
-------
|
| 63 |
+
>>> save_image(image)
|
| 64 |
+
|
| 65 |
+
owl_v2(prompt: str, image: numpy.ndarray, box_threshold: float = 0.1, iou_threshold: float = 0.1) -> List[Dict[str, Any]]:
|
| 66 |
+
'owl_v2' is a tool that can detect and count multiple objects given a text
|
| 67 |
+
prompt such as category names or referring expressions. The categories in text prompt
|
| 68 |
+
are separated by commas. It returns a list of bounding boxes with
|
| 69 |
+
normalized coordinates, label names and associated probability scores.
|
| 70 |
+
|
| 71 |
+
Parameters:
|
| 72 |
+
prompt (str): The prompt to ground to the image.
|
| 73 |
+
image (np.ndarray): The image to ground the prompt to.
|
| 74 |
+
box_threshold (float, optional): The threshold for the box detection. Defaults
|
| 75 |
+
to 0.10.
|
| 76 |
+
iou_threshold (float, optional): The threshold for the Intersection over Union
|
| 77 |
+
(IoU). Defaults to 0.10.
|
| 78 |
+
|
| 79 |
+
Returns:
|
| 80 |
+
List[Dict[str, Any]]: A list of dictionaries containing the score, label, and
|
| 81 |
+
bounding box of the detected objects with normalized coordinates between 0
|
| 82 |
+
and 1 (xmin, ymin, xmax, ymax). xmin and ymin are the coordinates of the
|
| 83 |
+
top-left and xmax and ymax are the coordinates of the bottom-right of the
|
| 84 |
+
bounding box.
|
| 85 |
+
|
| 86 |
+
Example
|
| 87 |
+
-------
|
| 88 |
+
>>> owl_v2("car. dinosaur", image)
|
| 89 |
+
[
|
| 90 |
+
{'score': 0.99, 'label': 'dinosaur', 'bbox': [0.1, 0.11, 0.35, 0.4]},
|
| 91 |
+
{'score': 0.98, 'label': 'car', 'bbox': [0.2, 0.21, 0.45, 0.5},
|
| 92 |
+
]
|
| 93 |
+
|
| 94 |
+
florencev2_object_detection(image: numpy.ndarray) -> List[Dict[str, Any]]:
|
| 95 |
+
'florencev2_object_detection' is a tool that can detect common objects in an
|
| 96 |
+
image without any text prompt or thresholding. It returns a list of detected objects
|
| 97 |
+
as labels and their location as bounding boxes.
|
| 98 |
+
|
| 99 |
+
Parameters:
|
| 100 |
+
image (np.ndarray): The image to used to detect objects
|
| 101 |
+
|
| 102 |
+
Returns:
|
| 103 |
+
List[Dict[str, Any]]: A list of dictionaries containing the score, label, and
|
| 104 |
+
bounding box of the detected objects with normalized coordinates between 0
|
| 105 |
+
and 1 (xmin, ymin, xmax, ymax). xmin and ymin are the coordinates of the
|
| 106 |
+
top-left and xmax and ymax are the coordinates of the bottom-right of the
|
| 107 |
+
bounding box. The scores are always 1.0 and cannot be thresholded
|
| 108 |
+
|
| 109 |
+
Example
|
| 110 |
+
-------
|
| 111 |
+
>>> florencev2_object_detection(image)
|
| 112 |
+
[
|
| 113 |
+
{'score': 1.0, 'label': 'window', 'bbox': [0.1, 0.11, 0.35, 0.4]},
|
| 114 |
+
{'score': 1.0, 'label': 'car', 'bbox': [0.2, 0.21, 0.45, 0.5},
|
| 115 |
+
{'score': 1.0, 'label': 'person', 'bbox': [0.34, 0.21, 0.85, 0.5},
|
| 116 |
+
]
|
| 117 |
+
|
| 118 |
+
grounding_sam(prompt: str, image: numpy.ndarray, box_threshold: float = 0.2, iou_threshold: float = 0.2) -> List[Dict[str, Any]]:
|
| 119 |
+
'grounding_sam' is a tool that can segment multiple objects given a
|
| 120 |
+
text prompt such as category names or referring expressions. The categories in text
|
| 121 |
+
prompt are separated by commas or periods. It returns a list of bounding boxes,
|
| 122 |
+
label names, mask file names and associated probability scores.
|
| 123 |
+
|
| 124 |
+
Parameters:
|
| 125 |
+
prompt (str): The prompt to ground to the image.
|
| 126 |
+
image (np.ndarray): The image to ground the prompt to.
|
| 127 |
+
box_threshold (float, optional): The threshold for the box detection. Defaults
|
| 128 |
+
to 0.20.
|
| 129 |
+
iou_threshold (float, optional): The threshold for the Intersection over Union
|
| 130 |
+
(IoU). Defaults to 0.20.
|
| 131 |
+
|
| 132 |
+
Returns:
|
| 133 |
+
List[Dict[str, Any]]: A list of dictionaries containing the score, label,
|
| 134 |
+
bounding box, and mask of the detected objects with normalized coordinates
|
| 135 |
+
(xmin, ymin, xmax, ymax). xmin and ymin are the coordinates of the top-left
|
| 136 |
+
and xmax and ymax are the coordinates of the bottom-right of the bounding box.
|
| 137 |
+
The mask is binary 2D numpy array where 1 indicates the object and 0 indicates
|
| 138 |
+
the background.
|
| 139 |
+
|
| 140 |
+
Example
|
| 141 |
+
-------
|
| 142 |
+
>>> grounding_sam("car. dinosaur", image)
|
| 143 |
+
[
|
| 144 |
+
{
|
| 145 |
+
'score': 0.99,
|
| 146 |
+
'label': 'dinosaur',
|
| 147 |
+
'bbox': [0.1, 0.11, 0.35, 0.4],
|
| 148 |
+
'mask': array([[0, 0, 0, ..., 0, 0, 0],
|
| 149 |
+
[0, 0, 0, ..., 0, 0, 0],
|
| 150 |
+
...,
|
| 151 |
+
[0, 0, 0, ..., 0, 0, 0],
|
| 152 |
+
[0, 0, 0, ..., 0, 0, 0]], dtype=uint8),
|
| 153 |
+
},
|
| 154 |
+
]
|
| 155 |
+
|
| 156 |
+
detr_segmentation(image: numpy.ndarray) -> List[Dict[str, Any]]:
|
| 157 |
+
'detr_segmentation' is a tool that can segment common objects in an
|
| 158 |
+
image without any text prompt. It returns a list of detected objects
|
| 159 |
+
as labels, their regions as masks and their scores.
|
| 160 |
+
|
| 161 |
+
Parameters:
|
| 162 |
+
image (np.ndarray): The image used to segment things and objects
|
| 163 |
+
|
| 164 |
+
Returns:
|
| 165 |
+
List[Dict[str, Any]]: A list of dictionaries containing the score, label
|
| 166 |
+
and mask of the detected objects. The mask is binary 2D numpy array where 1
|
| 167 |
+
indicates the object and 0 indicates the background.
|
| 168 |
+
|
| 169 |
+
Example
|
| 170 |
+
-------
|
| 171 |
+
>>> detr_segmentation(image)
|
| 172 |
+
[
|
| 173 |
+
{
|
| 174 |
+
'score': 0.45,
|
| 175 |
+
'label': 'window',
|
| 176 |
+
'mask': array([[0, 0, 0, ..., 0, 0, 0],
|
| 177 |
+
[0, 0, 0, ..., 0, 0, 0],
|
| 178 |
+
...,
|
| 179 |
+
[0, 0, 0, ..., 0, 0, 0],
|
| 180 |
+
[0, 0, 0, ..., 0, 0, 0]], dtype=uint8),
|
| 181 |
+
},
|
| 182 |
+
{
|
| 183 |
+
'score': 0.70,
|
| 184 |
+
'label': 'bird',
|
| 185 |
+
'mask': array([[0, 0, 0, ..., 0, 0, 0],
|
| 186 |
+
[0, 0, 0, ..., 0, 0, 0],
|
| 187 |
+
...,
|
| 188 |
+
[0, 0, 0, ..., 0, 0, 0],
|
| 189 |
+
[0, 0, 0, ..., 0, 0, 0]], dtype=uint8),
|
| 190 |
+
},
|
| 191 |
+
]
|
| 192 |
+
|
| 193 |
+
overlay_bounding_boxes(image: numpy.ndarray, bboxes: List[Dict[str, Any]]) -> numpy.ndarray:
|
| 194 |
+
'overlay_bounding_boxes' is a utility function that displays bounding boxes on
|
| 195 |
+
an image.
|
| 196 |
+
|
| 197 |
+
Parameters:
|
| 198 |
+
image (np.ndarray): The image to display the bounding boxes on.
|
| 199 |
+
bboxes (List[Dict[str, Any]]): A list of dictionaries containing the bounding
|
| 200 |
+
boxes.
|
| 201 |
+
|
| 202 |
+
Returns:
|
| 203 |
+
np.ndarray: The image with the bounding boxes, labels and scores displayed.
|
| 204 |
+
|
| 205 |
+
Example
|
| 206 |
+
-------
|
| 207 |
+
>>> image_with_bboxes = overlay_bounding_boxes(
|
| 208 |
+
image, [{'score': 0.99, 'label': 'dinosaur', 'bbox': [0.1, 0.11, 0.35, 0.4]}],
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
overlay_heat_map(image: numpy.ndarray, heat_map: Dict[str, Any], alpha: float = 0.8) -> numpy.ndarray:
|
| 212 |
+
'overlay_heat_map' is a utility function that displays a heat map on an image.
|
| 213 |
+
|
| 214 |
+
Parameters:
|
| 215 |
+
image (np.ndarray): The image to display the heat map on.
|
| 216 |
+
heat_map (Dict[str, Any]): A dictionary containing the heat map under the key
|
| 217 |
+
'heat_map'.
|
| 218 |
+
alpha (float, optional): The transparency of the overlay. Defaults to 0.8.
|
| 219 |
+
|
| 220 |
+
Returns:
|
| 221 |
+
np.ndarray: The image with the heat map displayed.
|
| 222 |
+
|
| 223 |
+
Example
|
| 224 |
+
-------
|
| 225 |
+
>>> image_with_heat_map = overlay_heat_map(
|
| 226 |
+
image,
|
| 227 |
+
{
|
| 228 |
+
'heat_map': array([[0, 0, 0, ..., 0, 0, 0],
|
| 229 |
+
[0, 0, 0, ..., 0, 0, 0],
|
| 230 |
+
...,
|
| 231 |
+
[0, 0, 0, ..., 0, 0, 0],
|
| 232 |
+
[0, 0, 0, ..., 125, 125, 125]], dtype=uint8),
|
| 233 |
+
},
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
overlay_segmentation_masks(image: numpy.ndarray, masks: List[Dict[str, Any]]) -> numpy.ndarray:
|
| 237 |
+
'overlay_segmentation_masks' is a utility function that displays segmentation
|
| 238 |
+
masks.
|
| 239 |
+
|
| 240 |
+
Parameters:
|
| 241 |
+
image (np.ndarray): The image to display the masks on.
|
| 242 |
+
masks (List[Dict[str, Any]]): A list of dictionaries containing the masks.
|
| 243 |
+
|
| 244 |
+
Returns:
|
| 245 |
+
np.ndarray: The image with the masks displayed.
|
| 246 |
+
|
| 247 |
+
Example
|
| 248 |
+
-------
|
| 249 |
+
>>> image_with_masks = overlay_segmentation_masks(
|
| 250 |
+
image,
|
| 251 |
+
[{
|
| 252 |
+
'score': 0.99,
|
| 253 |
+
'label': 'dinosaur',
|
| 254 |
+
'mask': array([[0, 0, 0, ..., 0, 0, 0],
|
| 255 |
+
[0, 0, 0, ..., 0, 0, 0],
|
| 256 |
+
...,
|
| 257 |
+
[0, 0, 0, ..., 0, 0, 0],
|
| 258 |
+
[0, 0, 0, ..., 0, 0, 0]], dtype=uint8),
|
| 259 |
+
}],
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
## Vision Agent Tools - model summary
|
| 263 |
+
|
| 264 |
+
| Model Name | Hugging Face Model | Primary Function | Use Cases |
|
| 265 |
+
|---------------------|-------------------------------------|-------------------------------|--------------------------------------------------------------|
|
| 266 |
+
| OWL-ViT v2 | google/owlv2-base-patch16-ensemble | Object detection and localization | - Open-world object detection<br>- Locating specific objects based on text prompts |
|
| 267 |
+
| Florence-2 | microsoft/florence-base | Multi-purpose vision tasks | - Image captioning<br>- Visual question answering<br>- Object detection |
|
| 268 |
+
| Depth Anything V2 | LiheYoung/depth-anything-v2-small | Depth estimation | - Estimating depth in images<br>- Generating depth maps |
|
| 269 |
+
| CLIP | openai/clip-vit-base-patch32 | Image-text similarity | - Zero-shot image classification<br>- Image-text matching |
|
| 270 |
+
| BLIP | Salesforce/blip-image-captioning-base | Image captioning | - Generating text descriptions of images |
|
| 271 |
+
| LOCA | Custom implementation | Object counting | - Zero-shot object counting<br>- Object counting with visual prompts |
|
| 272 |
+
| GIT v2 | microsoft/git-base-textcaps | Visual question answering and image captioning | - Answering questions about image content<br>- Generating text descriptions of images |
|
| 273 |
+
| Grounding DINO | groundingdino/groundingdino-swint-ogc | Object detection and localization | - Detecting objects based on text prompts |
|
| 274 |
+
| SAM | facebook/sam-vit-huge | Instance segmentation | - Text-prompted instance segmentation |
|
| 275 |
+
| DETR | facebook/detr-resnet-50 | Object detection | - General object detection |
|
| 276 |
+
| ViT | google/vit-base-patch16-224 | Image classification | - General image classification<br>- NSFW content detection |
|
| 277 |
+
| DPT | Intel/dpt-hybrid-midas | Monocular depth estimation | - Estimating depth from single images |
|
| 278 |
+
|