Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,12 +6,13 @@ import jax
|
|
| 6 |
import jax.numpy as jnp
|
| 7 |
import numpy as np
|
| 8 |
import flax.linen as nn
|
| 9 |
-
from inference import PaliGemmaModel
|
| 10 |
|
| 11 |
COLORS = ['#4285f4', '#db4437', '#f4b400', '#0f9d58', '#e48ef1']
|
| 12 |
|
| 13 |
-
# Instantiate the
|
| 14 |
pali_gemma_model = PaliGemmaModel()
|
|
|
|
| 15 |
|
| 16 |
##### Parse segmentation output tokens into masks
|
| 17 |
##### Also returns bounding boxes with their labels
|
|
@@ -120,118 +121,6 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 120 |
### Postprocessing Utils for Segmentation Tokens
|
| 121 |
### Segmentation tokens are passed to another VAE which decodes them to a mask
|
| 122 |
|
| 123 |
-
_MODEL_PATH = 'vae-oid.npz'
|
| 124 |
-
|
| 125 |
-
_SEGMENT_DETECT_RE = re.compile(
|
| 126 |
-
r'(.*?)' +
|
| 127 |
-
r'<loc(\d{4})>' * 4 + r'\s*' +
|
| 128 |
-
'(?:%s)?' % (r'<seg(\d{3})>' * 16) +
|
| 129 |
-
r'\s*([^;<>]+)? ?(?:; )?',
|
| 130 |
-
)
|
| 131 |
-
|
| 132 |
-
def _get_params(checkpoint):
|
| 133 |
-
"""Converts PyTorch checkpoint to Flax params."""
|
| 134 |
-
|
| 135 |
-
def transp(kernel):
|
| 136 |
-
return np.transpose(kernel, (2, 3, 1, 0))
|
| 137 |
-
|
| 138 |
-
def conv(name):
|
| 139 |
-
return {
|
| 140 |
-
'bias': checkpoint[name + '.bias'],
|
| 141 |
-
'kernel': transp(checkpoint[name + '.weight']),
|
| 142 |
-
}
|
| 143 |
-
|
| 144 |
-
def resblock(name):
|
| 145 |
-
return {
|
| 146 |
-
'Conv_0': conv(name + '.0'),
|
| 147 |
-
'Conv_1': conv(name + '.2'),
|
| 148 |
-
'Conv_2': conv(name + '.4'),
|
| 149 |
-
}
|
| 150 |
-
|
| 151 |
-
return {
|
| 152 |
-
'_embeddings': checkpoint['_vq_vae._embedding'],
|
| 153 |
-
'Conv_0': conv('decoder.0'),
|
| 154 |
-
'ResBlock_0': resblock('decoder.2.net'),
|
| 155 |
-
'ResBlock_1': resblock('decoder.3.net'),
|
| 156 |
-
'ConvTranspose_0': conv('decoder.4'),
|
| 157 |
-
'ConvTranspose_1': conv('decoder.6'),
|
| 158 |
-
'ConvTranspose_2': conv('decoder.8'),
|
| 159 |
-
'ConvTranspose_3': conv('decoder.10'),
|
| 160 |
-
'Conv_1': conv('decoder.12'),
|
| 161 |
-
}
|
| 162 |
-
|
| 163 |
-
def _quantized_values_from_codebook_indices(codebook_indices, embeddings):
|
| 164 |
-
batch_size, num_tokens = codebook_indices.shape
|
| 165 |
-
assert num_tokens == 16, codebook_indices.shape
|
| 166 |
-
unused_num_embeddings, embedding_dim = embeddings.shape
|
| 167 |
-
|
| 168 |
-
encodings = jnp.take(embeddings, codebook_indices.reshape((-1)), axis=0)
|
| 169 |
-
encodings = encodings.reshape((batch_size, 4, 4, embedding_dim))
|
| 170 |
-
return encodings
|
| 171 |
-
|
| 172 |
-
@functools.cache
|
| 173 |
-
def _get_reconstruct_masks():
|
| 174 |
-
"""Reconstructs masks from codebook indices.
|
| 175 |
-
Returns:
|
| 176 |
-
A function that expects indices shaped `[B, 16]` of dtype int32, each
|
| 177 |
-
ranging from 0 to 127 (inclusive), and that returns a decoded masks sized
|
| 178 |
-
`[B, 64, 64, 1]`, of dtype float32, in range [-1, 1].
|
| 179 |
-
"""
|
| 180 |
-
|
| 181 |
-
class ResBlock(nn.Module):
|
| 182 |
-
features: int
|
| 183 |
-
|
| 184 |
-
@nn.compact
|
| 185 |
-
def __call__(self, x):
|
| 186 |
-
original_x = x
|
| 187 |
-
x = nn.Conv(features=self.features, kernel_size=(3, 3), padding=1)(x)
|
| 188 |
-
x = nn.relu(x)
|
| 189 |
-
x = nn.Conv(features=self.features, kernel_size=(3, 3), padding=1)(x)
|
| 190 |
-
x = nn.relu(x)
|
| 191 |
-
x = nn.Conv(features=self.features, kernel_size=(1, 1), padding=0)(x)
|
| 192 |
-
return x + original_x
|
| 193 |
-
|
| 194 |
-
class Decoder(nn.Module):
|
| 195 |
-
"""Upscales quantized vectors to mask."""
|
| 196 |
-
|
| 197 |
-
@nn.compact
|
| 198 |
-
def __call__(self, x):
|
| 199 |
-
num_res_blocks = 2
|
| 200 |
-
dim = 128
|
| 201 |
-
num_upsample_layers = 4
|
| 202 |
-
|
| 203 |
-
x = nn.Conv(features=dim, kernel_size=(1, 1), padding=0)(x)
|
| 204 |
-
x = nn.relu(x)
|
| 205 |
-
|
| 206 |
-
for _ in range(num_res_blocks):
|
| 207 |
-
x = ResBlock(features=dim)(x)
|
| 208 |
-
|
| 209 |
-
for _ in range(num_upsample_layers):
|
| 210 |
-
x = nn.ConvTranspose(
|
| 211 |
-
features=dim,
|
| 212 |
-
kernel_size=(4, 4),
|
| 213 |
-
strides=(2, 2),
|
| 214 |
-
padding=2,
|
| 215 |
-
transpose_kernel=True,
|
| 216 |
-
)(x)
|
| 217 |
-
x = nn.relu(x)
|
| 218 |
-
dim //= 2
|
| 219 |
-
|
| 220 |
-
x = nn.Conv(features=1, kernel_size=(1, 1), padding=0)(x)
|
| 221 |
-
|
| 222 |
-
return x
|
| 223 |
-
|
| 224 |
-
def reconstruct_masks(codebook_indices):
|
| 225 |
-
quantized = _quantized_values_from_codebook_indices(
|
| 226 |
-
codebook_indices, params['_embeddings']
|
| 227 |
-
)
|
| 228 |
-
return Decoder().apply({'params': params}, quantized)
|
| 229 |
-
|
| 230 |
-
with open(_MODEL_PATH, 'rb') as f:
|
| 231 |
-
params = _get_params(dict(np.load(f)))
|
| 232 |
-
|
| 233 |
-
return jax.jit(reconstruct_masks, backend='cpu')
|
| 234 |
-
|
| 235 |
def extract_objs(text, width, height, unique_labels=False):
|
| 236 |
"""Returns objs for a string with "<loc>" and "<seg>" tokens."""
|
| 237 |
objs = []
|
|
@@ -252,7 +141,7 @@ def extract_objs(text, width, height, unique_labels=False):
|
|
| 252 |
mask = None
|
| 253 |
else:
|
| 254 |
seg_indices = np.array([int(x) for x in seg_indices], dtype=np.int32)
|
| 255 |
-
m64, =
|
| 256 |
m64 = np.clip(np.array(m64) * 0.5 + 0.5, 0, 1)
|
| 257 |
m64 = PIL.Image.fromarray((m64 * 255).astype('uint8'))
|
| 258 |
mask = np.zeros([height, width])
|
|
@@ -275,7 +164,12 @@ def extract_objs(text, width, height, unique_labels=False):
|
|
| 275 |
|
| 276 |
return objs
|
| 277 |
|
| 278 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
|
| 280 |
if __name__ == "__main__":
|
| 281 |
demo.queue(max_size=10).launch(debug=True)
|
|
|
|
| 6 |
import jax.numpy as jnp
|
| 7 |
import numpy as np
|
| 8 |
import flax.linen as nn
|
| 9 |
+
from inference import PaliGemmaModel, VAEModel
|
| 10 |
|
| 11 |
COLORS = ['#4285f4', '#db4437', '#f4b400', '#0f9d58', '#e48ef1']
|
| 12 |
|
| 13 |
+
# Instantiate the models
|
| 14 |
pali_gemma_model = PaliGemmaModel()
|
| 15 |
+
vae_model = VAEModel('vae-oid.npz')
|
| 16 |
|
| 17 |
##### Parse segmentation output tokens into masks
|
| 18 |
##### Also returns bounding boxes with their labels
|
|
|
|
| 121 |
### Postprocessing Utils for Segmentation Tokens
|
| 122 |
### Segmentation tokens are passed to another VAE which decodes them to a mask
|
| 123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
def extract_objs(text, width, height, unique_labels=False):
|
| 125 |
"""Returns objs for a string with "<loc>" and "<seg>" tokens."""
|
| 126 |
objs = []
|
|
|
|
| 141 |
mask = None
|
| 142 |
else:
|
| 143 |
seg_indices = np.array([int(x) for x in seg_indices], dtype=np.int32)
|
| 144 |
+
m64, = vae_model.reconstruct_masks(seg_indices[None])[..., 0]
|
| 145 |
m64 = np.clip(np.array(m64) * 0.5 + 0.5, 0, 1)
|
| 146 |
m64 = PIL.Image.fromarray((m64 * 255).astype('uint8'))
|
| 147 |
mask = np.zeros([height, width])
|
|
|
|
| 164 |
|
| 165 |
return objs
|
| 166 |
|
| 167 |
+
_SEGMENT_DETECT_RE = re.compile(
|
| 168 |
+
r'(.*?)' +
|
| 169 |
+
r'<loc(\d{4})>' * 4 + r'\s*' +
|
| 170 |
+
'(?:%s)?' % (r'<seg(\d{3})>' * 16) +
|
| 171 |
+
r'\s*([^;<>]+)? ?(?:; )?',
|
| 172 |
+
)
|
| 173 |
|
| 174 |
if __name__ == "__main__":
|
| 175 |
demo.queue(max_size=10).launch(debug=True)
|