|
|
|
|
|
from typing import List
|
|
|
import os
|
|
|
import numpy as np
|
|
|
import torch
|
|
|
from functools import lru_cache
|
|
|
from sentence_transformers import SentenceTransformer, CrossEncoder
|
|
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
|
|
|
|
|
load_dotenv()
|
|
|
|
|
|
|
|
|
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
|
|
|
if not GOOGLE_API_KEY:
|
|
|
print("⚠️ Uyarı: GOOGLE_API_KEY .env dosyasında bulunamadı!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EMB_MODEL_NAME = os.getenv("EMB_MODEL", "intfloat/multilingual-e5-small")
|
|
|
|
|
|
RERANKER_NAME = os.getenv("RERANKER_MODEL", "cross-encoder/ms-marco-MiniLM-L-6-v2")
|
|
|
GEMINI_MODEL = os.getenv("GEMINI_MODEL", "gemini-1.5-flash")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_emb_model: SentenceTransformer | None = None
|
|
|
|
|
|
def _get_emb_model() -> SentenceTransformer:
|
|
|
global _emb_model
|
|
|
if _emb_model is None:
|
|
|
|
|
|
torch.set_num_threads(max(1, (os.cpu_count() or 4) // 2))
|
|
|
_emb_model = SentenceTransformer(EMB_MODEL_NAME)
|
|
|
return _emb_model
|
|
|
|
|
|
def embed(texts: List[str]) -> np.ndarray:
|
|
|
"""E5 embedding üretir (normalize etmez)."""
|
|
|
model = _get_emb_model()
|
|
|
vecs = model.encode(
|
|
|
texts,
|
|
|
batch_size=32,
|
|
|
show_progress_bar=False,
|
|
|
convert_to_numpy=True,
|
|
|
normalize_embeddings=False,
|
|
|
)
|
|
|
return vecs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_reranker: CrossEncoder | None = None
|
|
|
|
|
|
def _get_reranker() -> CrossEncoder:
|
|
|
global _reranker
|
|
|
if _reranker is None:
|
|
|
|
|
|
trust = "jina" in RERANKER_NAME.lower()
|
|
|
_reranker = CrossEncoder(
|
|
|
RERANKER_NAME,
|
|
|
max_length=384,
|
|
|
trust_remote_code=trust,
|
|
|
)
|
|
|
return _reranker
|
|
|
|
|
|
def rerank(query: str, candidates: List[str]) -> List[float]:
|
|
|
"""Sorgu + aday pasajlar için alaka skorları döndürür (yüksek skor = daha alakalı)."""
|
|
|
model = _get_reranker()
|
|
|
pairs = [[query, c] for c in candidates]
|
|
|
scores = model.predict(pairs, convert_to_numpy=True, show_progress_bar=False)
|
|
|
return scores.tolist()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_QA_MODEL = os.getenv("QA_MODEL", "savasy/bert-base-turkish-squad")
|
|
|
_qa_pipe = None
|
|
|
|
|
|
def qa_extract(question: str, context: str) -> dict:
|
|
|
"""
|
|
|
Pasajdan doğrudan cevap span'ı çıkarır.
|
|
|
Dönen örnek: {'answer': '1907', 'score': 0.93, 'start': 123, 'end': 127}
|
|
|
Kullanmazsan çağırma; yüklenmez ve hız etkisi olmaz.
|
|
|
"""
|
|
|
global _qa_pipe
|
|
|
if _qa_pipe is None:
|
|
|
from transformers import pipeline
|
|
|
_qa_pipe = pipeline("question-answering", model=_QA_MODEL, tokenizer=_QA_MODEL)
|
|
|
res = _qa_pipe(question=question, context=context)
|
|
|
return dict(res)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def generate(prompt: str) -> str:
|
|
|
"""
|
|
|
Gemini ile üretken cevap. GOOGLE_API_KEY yoksa 'LLM yapılandırılmadı.' döner.
|
|
|
"""
|
|
|
api_key = os.getenv("GOOGLE_API_KEY")
|
|
|
if not api_key:
|
|
|
return "LLM yapılandırılmadı."
|
|
|
try:
|
|
|
import google.generativeai as genai
|
|
|
genai.configure(api_key=api_key)
|
|
|
model = genai.GenerativeModel(GEMINI_MODEL)
|
|
|
response = model.generate_content(
|
|
|
prompt,
|
|
|
generation_config=genai.types.GenerationConfig(
|
|
|
temperature=0.1, max_output_tokens=300, top_p=0.8
|
|
|
),
|
|
|
)
|
|
|
return response.text.strip() if hasattr(response, "text") else "Cevap oluşturulamadı."
|
|
|
except Exception as e:
|
|
|
return f"LLM hata: {e}" |