|  |  | 
					
						
						|  | import os, json, re, gzip, shutil | 
					
						
						|  | from typing import List, Dict, Tuple | 
					
						
						|  | from functools import lru_cache | 
					
						
						|  |  | 
					
						
						|  | import faiss | 
					
						
						|  | import numpy as np | 
					
						
						|  |  | 
					
						
						|  | from providers import embed, generate, rerank, qa_extract | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | VSTORE_DIR    = "vectorstore" | 
					
						
						|  | FAISS_FILE    = "index.faiss" | 
					
						
						|  | META_JSONL    = "meta.jsonl" | 
					
						
						|  | META_JSONL_GZ = "meta.jsonl.gz" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | TOP_K_DEFAULT   = 4 | 
					
						
						|  | FETCH_K_DEFAULT = 16 | 
					
						
						|  | HIGH_SCORE_THRES = 0.78 | 
					
						
						|  | MARGIN_THRES     = 0.06 | 
					
						
						|  |  | 
					
						
						|  | CTX_CHAR_LIMIT  = 1400 | 
					
						
						|  | QA_SCORE_THRES  = 0.25 | 
					
						
						|  | QA_PER_PASSAGES = 4 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | W_TITLE_BOOST = 0.25 | 
					
						
						|  | W_LEXICAL     = 0.15 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | DATE_RX = re.compile( | 
					
						
						|  | r"\b(\d{1,2}\s+(Ocak|Şubat|Mart|Nisan|Mayıs|Haziran|Temmuz|Ağustos|Eylül|Ekim|Kasım|Aralık)\s+\d{3,4}" | 
					
						
						|  | r"|\d{1,2}\.\d{1,2}\.\d{2,4}" | 
					
						
						|  | r"|\d{4})\b", | 
					
						
						|  | flags=re.IGNORECASE, | 
					
						
						|  | ) | 
					
						
						|  | DEATH_KEYS  = ["öldü", "vefat", "hayatını kaybet", "ölümü", "ölüm"] | 
					
						
						|  | FOUND_KEYS  = ["kuruldu", "kuruluş", "kurulmuştur", "kuruluşu", "kuruluş tarihi"] | 
					
						
						|  |  | 
					
						
						|  | def _split_sentences(txt: str) -> List[str]: | 
					
						
						|  | parts = re.split(r"(?<=[.!?])\s+", (txt or "").strip()) | 
					
						
						|  | return [p.strip() for p in parts if p.strip()] | 
					
						
						|  |  | 
					
						
						|  | def _extract_fact_sentence(query: str, hits: List[Dict]) -> Tuple[str, str]: | 
					
						
						|  | """ | 
					
						
						|  | 'ne zaman öldü / ne zaman kuruldu' tipindeki sorularda | 
					
						
						|  | tarih + anahtar kelime içeren ilk cümleyi yakala. | 
					
						
						|  | Dönen: (cümle, kaynak_url) | ("", "") | 
					
						
						|  | """ | 
					
						
						|  | q = (query or "").lower() | 
					
						
						|  | if "ne zaman" not in q: | 
					
						
						|  | return "", "" | 
					
						
						|  |  | 
					
						
						|  | if any(k in q for k in ["öldü", "vefat", "ölümü", "ölüm"]): | 
					
						
						|  | keylist = DEATH_KEYS | 
					
						
						|  | elif any(k in q for k in ["kuruldu", "kuruluş"]): | 
					
						
						|  | keylist = FOUND_KEYS | 
					
						
						|  | else: | 
					
						
						|  | keylist = DEATH_KEYS + FOUND_KEYS | 
					
						
						|  |  | 
					
						
						|  | for h in hits: | 
					
						
						|  | for s in _split_sentences(h.get("text", "")): | 
					
						
						|  | if any(k in s.lower() for k in keylist) and DATE_RX.search(s): | 
					
						
						|  | return s, h.get("source", "") | 
					
						
						|  | return "", "" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | NAME_RX = re.compile(r"\b([A-ZÇĞİIÖŞÜ][a-zçğıiöşü]+(?:\s+[A-ZÇĞİIÖŞÜ][a-zçğıiöşü]+){0,3})\b") | 
					
						
						|  |  | 
					
						
						|  | def _expand_named_span(answer: str, hits: List[Dict]) -> str: | 
					
						
						|  | """ | 
					
						
						|  | QA'dan gelen 'Kemal' gibi kısa/eksik özel adı, | 
					
						
						|  | bağlamdaki en uzun uygun özel adla genişletir. | 
					
						
						|  | """ | 
					
						
						|  | ans = (answer or "").strip() | 
					
						
						|  | if not ans or len(ans.split()) > 2: | 
					
						
						|  | return ans | 
					
						
						|  |  | 
					
						
						|  | ans_low = ans.lower() | 
					
						
						|  |  | 
					
						
						|  | preferred_aliases = [ | 
					
						
						|  | "Mustafa Kemal Atatürk", | 
					
						
						|  | "Sabiha Gökçen", | 
					
						
						|  | "İsmet İnönü", | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | for h in hits: | 
					
						
						|  | text = h.get("text", "") | 
					
						
						|  | for alias in preferred_aliases: | 
					
						
						|  | if alias.lower().find(ans_low) != -1 and alias in text: | 
					
						
						|  | return alias | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | best = ans | 
					
						
						|  | for h in hits: | 
					
						
						|  | for sent in _split_sentences(h.get("text", "")): | 
					
						
						|  | if ans_low not in sent.lower(): | 
					
						
						|  | continue | 
					
						
						|  | for m in NAME_RX.finditer(sent): | 
					
						
						|  | cand = m.group(1).strip() | 
					
						
						|  | if ans_low in cand.lower(): | 
					
						
						|  | if len(cand) >= len(best) and any(ch.islower() for ch in cand): | 
					
						
						|  | best = cand if len(cand.split()) >= len(best.split()) else best | 
					
						
						|  | return best | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _open_meta(path: str): | 
					
						
						|  | return gzip.open(path, "rt", encoding="utf-8") if path.endswith(".gz") else open(path, "r", encoding="utf-8") | 
					
						
						|  |  | 
					
						
						|  | def _ensure_local_vectorstore(vstore_dir: str): | 
					
						
						|  | """ | 
					
						
						|  | vectorstore klasörü yoksa veya LFS/Xet pointer yüzünden gerçek içerik yoksa | 
					
						
						|  | Space deposundan indir ve vstore_dir içine kopyala. | 
					
						
						|  | """ | 
					
						
						|  | os.makedirs(vstore_dir, exist_ok=True) | 
					
						
						|  |  | 
					
						
						|  | faiss_path = os.path.join(vstore_dir, FAISS_FILE) | 
					
						
						|  | meta_path  = os.path.join(vstore_dir, META_JSONL) | 
					
						
						|  | meta_gz    = os.path.join(vstore_dir, META_JSONL_GZ) | 
					
						
						|  |  | 
					
						
						|  | have_faiss = os.path.exists(faiss_path) | 
					
						
						|  | have_meta  = os.path.exists(meta_path) or os.path.exists(meta_gz) | 
					
						
						|  | if have_faiss and have_meta: | 
					
						
						|  | return | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | from huggingface_hub import snapshot_download | 
					
						
						|  | except Exception as e: | 
					
						
						|  | raise FileNotFoundError( | 
					
						
						|  | f"'{faiss_path}' indirilemedi veya bulunamadı ve 'huggingface_hub' yok: {e}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | repo_id = os.environ.get("HF_SPACE_REPO_ID") | 
					
						
						|  | if not repo_id: | 
					
						
						|  | owner = os.environ.get("SPACE_AUTHOR_NAME") | 
					
						
						|  | space = os.environ.get("SPACE_REPO_NAME") | 
					
						
						|  | if owner and space: | 
					
						
						|  | repo_id = f"{owner}/{space}" | 
					
						
						|  | else: | 
					
						
						|  | raise FileNotFoundError( | 
					
						
						|  | "HF_SPACE_REPO_ID tanımlı değil. Settings ▸ Variables bölümüne " | 
					
						
						|  | "HF_SPACE_REPO_ID = <kullanıcı>/<space> olarak ekleyin." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | cache_dir = snapshot_download( | 
					
						
						|  | repo_id=repo_id, | 
					
						
						|  | repo_type="space", | 
					
						
						|  | allow_patterns=["vectorstore/*"], | 
					
						
						|  | ignore_patterns=["*.ipynb", "*.png", "*.jpg", "*.jpeg", "*.gif"], | 
					
						
						|  | local_files_only=False, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | src_faiss  = os.path.join(cache_dir, "vectorstore", FAISS_FILE) | 
					
						
						|  | src_meta   = os.path.join(cache_dir, "vectorstore", META_JSONL) | 
					
						
						|  | src_metagz = os.path.join(cache_dir, "vectorstore", META_JSONL_GZ) | 
					
						
						|  |  | 
					
						
						|  | if not os.path.exists(src_faiss): | 
					
						
						|  | raise FileNotFoundError(f"'{FAISS_FILE}' Space deposunda bulunamadı (repo: {repo_id}).") | 
					
						
						|  |  | 
					
						
						|  | shutil.copy2(src_faiss, faiss_path) | 
					
						
						|  | if os.path.exists(src_metagz): | 
					
						
						|  | shutil.copy2(src_metagz, meta_gz) | 
					
						
						|  | elif os.path.exists(src_meta): | 
					
						
						|  | shutil.copy2(src_meta, meta_path) | 
					
						
						|  | else: | 
					
						
						|  | raise FileNotFoundError(f"'meta.jsonl(.gz)' Space deposunda bulunamadı (repo: {repo_id}).") | 
					
						
						|  |  | 
					
						
						|  | def load_vectorstore(vstore_dir: str = VSTORE_DIR) -> Tuple[faiss.Index, List[Dict]]: | 
					
						
						|  | """ | 
					
						
						|  | HF Spaces'ta LFS/Xet pointer dosyaları yüzünden yerel kopya yoksa, | 
					
						
						|  | gerekli dosyaları repo'dan indirir ve okur. | 
					
						
						|  | """ | 
					
						
						|  | _ensure_local_vectorstore(vstore_dir) | 
					
						
						|  |  | 
					
						
						|  | index_path   = os.path.join(vstore_dir, FAISS_FILE) | 
					
						
						|  | meta_path_gz = os.path.join(vstore_dir, META_JSONL_GZ) | 
					
						
						|  | meta_path    = meta_path_gz if os.path.exists(meta_path_gz) else os.path.join(vstore_dir, META_JSONL) | 
					
						
						|  |  | 
					
						
						|  | if not (os.path.exists(index_path) and os.path.exists(meta_path)): | 
					
						
						|  | raise FileNotFoundError( | 
					
						
						|  | "Vektör deposu bulunamadı. Lütfen 'vectorstore/index.faiss' ile " | 
					
						
						|  | "'vectorstore/meta.jsonl' (veya meta.jsonl.gz) dosyalarının mevcut olduğundan emin olun." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | index = faiss.read_index(index_path) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  |  | 
					
						
						|  | ef = int(os.environ.get("FAISS_EFSEARCH", "32")) | 
					
						
						|  | if hasattr(index, "hnsw"): | 
					
						
						|  | index.hnsw.efSearch = ef | 
					
						
						|  | except Exception: | 
					
						
						|  | pass | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | records: List[Dict] = [] | 
					
						
						|  | with _open_meta(meta_path) as f: | 
					
						
						|  | for line in f: | 
					
						
						|  | if not line.strip(): | 
					
						
						|  | continue | 
					
						
						|  | obj = json.loads(line) | 
					
						
						|  | records.append({ | 
					
						
						|  | "text": obj.get("text", ""), | 
					
						
						|  | "metadata": obj.get("metadata", {}) | 
					
						
						|  | }) | 
					
						
						|  |  | 
					
						
						|  | if not records: | 
					
						
						|  | raise RuntimeError("meta.jsonl(.gz) boş görünüyor veya okunamadı.") | 
					
						
						|  |  | 
					
						
						|  | return index, records | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _CAP_WORD = re.compile(r"\b([A-ZÇĞİIÖŞÜ][a-zçğıiöşü]+(?:\s+[A-ZÇĞİIÖŞÜ][a-zçğıiöşü]+)*)\b") | 
					
						
						|  |  | 
					
						
						|  | def _keywords_from_query(q: str) -> List[str]: | 
					
						
						|  | q = (q or "").strip() | 
					
						
						|  | caps = [m.group(1) for m in _CAP_WORD.finditer(q)] | 
					
						
						|  | nums = re.findall(r"\b\d{3,4}\b", q) | 
					
						
						|  | base = re.findall(r"[A-Za-zÇĞİIÖŞÜçğıiöşü]+", q) | 
					
						
						|  | base = [w.lower() for w in base if len(w) > 2] | 
					
						
						|  |  | 
					
						
						|  | return list(dict.fromkeys(caps + nums + base)) | 
					
						
						|  |  | 
					
						
						|  | def _lexical_overlap(q_tokens: List[str], text: str) -> float: | 
					
						
						|  | toks = re.findall(r"[A-Za-zÇĞİIÖŞÜçğıiöşü]+", (text or "").lower()) | 
					
						
						|  | if not toks: | 
					
						
						|  | return 0.0 | 
					
						
						|  | qset = set([t for t in q_tokens if len(t) > 2]) | 
					
						
						|  | tset = set([t for t in toks if len(t) > 2]) | 
					
						
						|  | inter = len(qset & tset) | 
					
						
						|  | denom = len(qset) or 1 | 
					
						
						|  | return inter / denom | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @lru_cache(maxsize=256) | 
					
						
						|  | def _cached_query_vec(e5_query: str) -> np.ndarray: | 
					
						
						|  | """E5 sorgu embedding'ini cache'ler.""" | 
					
						
						|  | v = embed([e5_query]).astype("float32") | 
					
						
						|  | return v | 
					
						
						|  |  | 
					
						
						|  | def search_chunks( | 
					
						
						|  | query: str, | 
					
						
						|  | index: faiss.Index, | 
					
						
						|  | records: List[Dict], | 
					
						
						|  | top_k: int = TOP_K_DEFAULT, | 
					
						
						|  | fetch_k: int = FETCH_K_DEFAULT, | 
					
						
						|  | ) -> List[Dict]: | 
					
						
						|  | q = (query or "").strip() | 
					
						
						|  | q_e5 = "query: " + q | 
					
						
						|  | q_vec = _cached_query_vec(q_e5) | 
					
						
						|  | faiss.normalize_L2(q_vec) | 
					
						
						|  |  | 
					
						
						|  | scores, idxs = index.search(q_vec, fetch_k) | 
					
						
						|  |  | 
					
						
						|  | pool: List[Dict] = [] | 
					
						
						|  | for i, s in zip(idxs[0], scores[0]): | 
					
						
						|  | if 0 <= i < len(records): | 
					
						
						|  | md = records[i]["metadata"] or {} | 
					
						
						|  | pool.append({ | 
					
						
						|  | "text": records[i]["text"], | 
					
						
						|  | "title": md.get("title", ""), | 
					
						
						|  | "source": md.get("source", ""), | 
					
						
						|  | "score_vec": float(s), | 
					
						
						|  | }) | 
					
						
						|  | if not pool: | 
					
						
						|  | return [] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | q_tokens = _keywords_from_query(q) | 
					
						
						|  | q_tokens_lower = [t.lower() for t in q_tokens] | 
					
						
						|  | for p in pool: | 
					
						
						|  | title = (p.get("title") or "").lower() | 
					
						
						|  |  | 
					
						
						|  | title_hit = any(tok.lower() in title for tok in q_tokens if tok and tok[0].isupper()) | 
					
						
						|  | title_boost = W_TITLE_BOOST if title_hit else 0.0 | 
					
						
						|  | lex = _lexical_overlap(q_tokens_lower, p["text"]) * W_LEXICAL | 
					
						
						|  | p["score_boosted"] = p["score_vec"] + title_boost + lex | 
					
						
						|  |  | 
					
						
						|  | pool_by_boost = sorted(pool, key=lambda x: x["score_boosted"], reverse=True) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if len(pool_by_boost) >= 2: | 
					
						
						|  | top1, top2 = pool_by_boost[0]["score_boosted"], pool_by_boost[1]["score_boosted"] | 
					
						
						|  | else: | 
					
						
						|  | top1, top2 = pool_by_boost[0]["score_boosted"], 0.0 | 
					
						
						|  | do_rerank = not (top1 >= HIGH_SCORE_THRES and (top1 - top2) >= MARGIN_THRES) | 
					
						
						|  |  | 
					
						
						|  | if do_rerank: | 
					
						
						|  | try: | 
					
						
						|  | rs = rerank(q, [p["text"] for p in pool_by_boost]) | 
					
						
						|  | for p, r in zip(pool_by_boost, rs): | 
					
						
						|  | p["score_rerank"] = float(r) | 
					
						
						|  | pool_by_boost.sort( | 
					
						
						|  | key=lambda x: (x.get("score_rerank", 0.0), x["score_boosted"]), | 
					
						
						|  | reverse=True, | 
					
						
						|  | ) | 
					
						
						|  | except Exception: | 
					
						
						|  |  | 
					
						
						|  | pass | 
					
						
						|  |  | 
					
						
						|  | return pool_by_boost[:top_k] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _format_sources(hits: List[Dict]) -> str: | 
					
						
						|  | seen, urls = set(), [] | 
					
						
						|  | for h in hits: | 
					
						
						|  | u = (h.get("source") or "").strip() | 
					
						
						|  | if u and u not in seen: | 
					
						
						|  | urls.append(u) | 
					
						
						|  | seen.add(u) | 
					
						
						|  | return "\n".join(f"- {u}" for u in urls) if urls else "- (yok)" | 
					
						
						|  |  | 
					
						
						|  | def _llm_context(hits: List[Dict], limit: int = CTX_CHAR_LIMIT) -> str: | 
					
						
						|  | ctx, total = [], 0 | 
					
						
						|  | for i, h in enumerate(hits, 1): | 
					
						
						|  | block = f"[{i}] {h.get('title','')} — {h.get('source','')}\n{h.get('text','')}" | 
					
						
						|  | if total + len(block) > limit: | 
					
						
						|  | break | 
					
						
						|  | ctx.append(block) | 
					
						
						|  | total += len(block) | 
					
						
						|  | return "\n\n---\n\n".join(ctx) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def generate_answer( | 
					
						
						|  | query: str, | 
					
						
						|  | index: faiss.Index, | 
					
						
						|  | records: List[Dict], | 
					
						
						|  | top_k: int = TOP_K_DEFAULT, | 
					
						
						|  | ) -> str: | 
					
						
						|  | hits = search_chunks(query, index, records, top_k=top_k) | 
					
						
						|  | if not hits: | 
					
						
						|  | return "Bilgi bulunamadı." | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | rule_sent, rule_src = _extract_fact_sentence(query, hits) | 
					
						
						|  | if rule_sent: | 
					
						
						|  | return f"{rule_sent}\n\nKaynaklar:\n- {rule_src if rule_src else _format_sources(hits)}" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | best = {"answer": None, "score": 0.0, "src": None} | 
					
						
						|  | for h in hits[:QA_PER_PASSAGES]: | 
					
						
						|  | try: | 
					
						
						|  | qa = qa_extract(query, h["text"]) | 
					
						
						|  | except Exception: | 
					
						
						|  | qa = None | 
					
						
						|  | if qa and qa.get("answer"): | 
					
						
						|  | score = float(qa.get("score", 0.0)) | 
					
						
						|  | ans = (qa.get("answer") or "").strip() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if re.search(r"\b(19\d{2}|20\d{2}|Atatürk|Gökçen|Kemal|Ankara|Fenerbahçe)\b", | 
					
						
						|  | ans, flags=re.IGNORECASE): | 
					
						
						|  | score += 0.30 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if len(ans.split()) <= 2: | 
					
						
						|  | ans = _expand_named_span(ans, hits) | 
					
						
						|  |  | 
					
						
						|  | if score > best["score"]: | 
					
						
						|  | best = {"answer": ans, "score": score, "src": h.get("source")} | 
					
						
						|  |  | 
					
						
						|  | if best["answer"] and best["score"] >= QA_SCORE_THRES: | 
					
						
						|  | final = best["answer"].strip() | 
					
						
						|  |  | 
					
						
						|  | if any(k in (query or "").lower() for k in ["kimdir", "kim"]): | 
					
						
						|  | if not final.endswith("."): | 
					
						
						|  | final += "." | 
					
						
						|  | final = f"{final} {query.rstrip('?')} sorusunun yanıtıdır." | 
					
						
						|  | src_line = f"Kaynaklar:\n- {best['src']}" if best["src"] else "Kaynaklar:\n" + _format_sources(hits) | 
					
						
						|  | return f"{final}\n\n{src_line}" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | context = _llm_context(hits) | 
					
						
						|  | prompt = ( | 
					
						
						|  | "Aşağıdaki BAĞLAM Wikipedia parçalarından alınmıştır.\n" | 
					
						
						|  | "Sadece bu bağlamdan yararlanarak soruya kısa, net ve doğru bir Türkçe cevap ver.\n" | 
					
						
						|  | "Uydurma yapma, sadece metinlerde geçen bilgileri kullan.\n\n" | 
					
						
						|  | f"Soru:\n{query}\n\nBağlam:\n{context}\n\nYanıtı 1-2 cümlede ver." | 
					
						
						|  | ) | 
					
						
						|  | llm_ans = (generate(prompt) or "").strip() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if (not llm_ans) or ("yapılandırılmadı" in llm_ans.lower()): | 
					
						
						|  | text = hits[0].get("text", "") | 
					
						
						|  | first = re.split(r"(?<=[.!?])\s+", text.strip())[:2] | 
					
						
						|  | llm_ans = " ".join(first).strip() or "Verilen bağlamda bu sorunun cevabı bulunmamaktadır." | 
					
						
						|  |  | 
					
						
						|  | if "Kaynaklar:" not in llm_ans: | 
					
						
						|  | llm_ans += "\n\nKaynaklar:\n" + _format_sources(hits) | 
					
						
						|  | return llm_ans | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  | idx, recs = load_vectorstore(VSTORE_DIR) | 
					
						
						|  | for q in [ | 
					
						
						|  | "Atatürk ne zaman öldü?", | 
					
						
						|  | "Türkiye'nin ilk cumhurbaşkanı kimdir?", | 
					
						
						|  | "Fenerbahçe ne zaman kuruldu?", | 
					
						
						|  | "Türkiye'nin başkenti neresidir?", | 
					
						
						|  | "Türkiye'nin ilk kadın pilotu kimdir?", | 
					
						
						|  | ]: | 
					
						
						|  | print("Soru:", q) | 
					
						
						|  | print(generate_answer(q, idx, recs, top_k=TOP_K_DEFAULT)) | 
					
						
						|  | print("-" * 80) |