Spaces:
Sleeping
Sleeping
Update rag_pipeline.py
Browse files- rag_pipeline.py +59 -93
rag_pipeline.py
CHANGED
|
@@ -8,34 +8,31 @@ import numpy as np
|
|
| 8 |
|
| 9 |
from providers import embed, generate, rerank, qa_extract
|
| 10 |
|
| 11 |
-
|
| 12 |
# =========================
|
| 13 |
-
#
|
| 14 |
# =========================
|
| 15 |
VSTORE_DIR = "vectorstore"
|
| 16 |
FAISS_FILE = "index.faiss"
|
| 17 |
META_JSONL = "meta.jsonl"
|
| 18 |
|
| 19 |
-
|
| 20 |
# =========================
|
| 21 |
# Hız / kalite ayarları
|
| 22 |
# =========================
|
| 23 |
-
TOP_K_DEFAULT = 4
|
| 24 |
-
FETCH_K_DEFAULT = 16
|
| 25 |
-
|
| 26 |
-
|
|
|
|
| 27 |
|
| 28 |
-
CTX_CHAR_LIMIT = 1400
|
| 29 |
-
QA_SCORE_THRES = 0.25
|
| 30 |
-
QA_PER_PASSAGES = 4
|
| 31 |
|
| 32 |
-
# Basit "title" ve "lexical" boost ağırlıkları
|
| 33 |
W_TITLE_BOOST = 0.25
|
| 34 |
W_LEXICAL = 0.15
|
| 35 |
|
| 36 |
-
|
| 37 |
# =========================
|
| 38 |
-
#
|
| 39 |
# =========================
|
| 40 |
DATE_RX = re.compile(
|
| 41 |
r"\b(\d{1,2}\s+(Ocak|Şubat|Mart|Nisan|Mayıs|Haziran|Temmuz|Ağustos|Eylül|Ekim|Kasım|Aralık)\s+\d{3,4}"
|
|
@@ -43,52 +40,17 @@ DATE_RX = re.compile(
|
|
| 43 |
r"|\d{4})\b",
|
| 44 |
flags=re.IGNORECASE
|
| 45 |
)
|
| 46 |
-
|
| 47 |
DEATH_KEYS = ["öldü", "vefat", "hayatını kaybet", "ölümü", "ölüm"]
|
| 48 |
FOUND_KEYS = ["kuruldu", "kuruluş", "kurulmuştur", "kuruluşu", "kuruluş tarihi"]
|
| 49 |
|
| 50 |
-
CAP_WORD_RX = re.compile(r"\b([A-ZÇĞİIÖŞÜ][a-zçğıiöşü]+(?:\s+[A-ZÇĞİIÖŞÜ][a-zçğıiöşü]+)*)\b")
|
| 51 |
-
NAME_RX = re.compile(r"\b([A-ZÇĞİIÖŞÜ][a-zçğıiöşü]+(?:\s+[A-ZÇĞİIÖŞÜ][a-zçğıiöşü]+){0,3})\b")
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
# =========================
|
| 55 |
-
# Küçük yardımcılar
|
| 56 |
-
# =========================
|
| 57 |
def _split_sentences(txt: str) -> List[str]:
|
| 58 |
parts = re.split(r"(?<=[.!?])\s+", (txt or "").strip())
|
| 59 |
return [p.strip() for p in parts if p.strip()]
|
| 60 |
|
| 61 |
-
|
| 62 |
-
def _keywords_from_query(q: str) -> List[str]:
|
| 63 |
-
q = (q or "").strip()
|
| 64 |
-
caps = [m.group(1) for m in CAP_WORD_RX.finditer(q)]
|
| 65 |
-
nums = re.findall(r"\b\d{3,4}\b", q)
|
| 66 |
-
base = [w.lower() for w in re.findall(r"[A-Za-zÇĞİIÖŞÜçğıiöşü]+", q) if len(w) > 2]
|
| 67 |
-
# sıralı benzersiz
|
| 68 |
-
return list(dict.fromkeys(caps + nums + base))
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
def _lexical_overlap(q_tokens: List[str], text: str) -> float:
|
| 72 |
-
toks = re.findall(r"[A-Za-zÇĞİIÖŞÜçğıiöşü]+", (text or "").lower())
|
| 73 |
-
if not toks:
|
| 74 |
-
return 0.0
|
| 75 |
-
qset = set([t for t in q_tokens if len(t) > 2])
|
| 76 |
-
tset = set([t for t in toks if len(t) > 2])
|
| 77 |
-
inter = len(qset & tset)
|
| 78 |
-
denom = len(qset) or 1
|
| 79 |
-
return inter / denom
|
| 80 |
-
|
| 81 |
-
|
| 82 |
def _extract_fact_sentence(query: str, hits: List[Dict]) -> Tuple[str, str]:
|
| 83 |
-
"""
|
| 84 |
-
'ne zaman öldü / ne zaman kuruldu' tipindeki sorularda
|
| 85 |
-
tarih + anahtar kelime içeren ilk cümleyi yakala.
|
| 86 |
-
Döndür: (cümle, kaynak_url) | ("", "")
|
| 87 |
-
"""
|
| 88 |
q = (query or "").lower()
|
| 89 |
if "ne zaman" not in q:
|
| 90 |
return "", ""
|
| 91 |
-
|
| 92 |
if any(k in q for k in DEATH_KEYS):
|
| 93 |
keylist = DEATH_KEYS
|
| 94 |
elif any(k in q for k in ["kuruldu", "kuruluş"]):
|
|
@@ -102,19 +64,17 @@ def _extract_fact_sentence(query: str, hits: List[Dict]) -> Tuple[str, str]:
|
|
| 102 |
return s, h.get("source", "")
|
| 103 |
return "", ""
|
| 104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
def _expand_named_span(answer: str, hits: List[Dict]) -> str:
|
| 107 |
-
"""
|
| 108 |
-
QA'dan gelen 'Kemal' gibi kısa/eksik özel adı,
|
| 109 |
-
bağlamdaki en uzun uygun özel adla genişletir.
|
| 110 |
-
"""
|
| 111 |
ans = (answer or "").strip()
|
| 112 |
if not ans or len(ans.split()) > 2:
|
| 113 |
return ans
|
| 114 |
-
|
| 115 |
ans_low = ans.lower()
|
| 116 |
|
| 117 |
-
# Öncelikli alias'lar
|
| 118 |
preferred_aliases = [
|
| 119 |
"Mustafa Kemal Atatürk",
|
| 120 |
"Sabiha Gökçen",
|
|
@@ -129,61 +89,79 @@ def _expand_named_span(answer: str, hits: List[Dict]) -> str:
|
|
| 129 |
best = ans
|
| 130 |
for h in hits:
|
| 131 |
for sent in _split_sentences(h.get("text", "")):
|
| 132 |
-
if ans_low not in sent.lower():
|
| 133 |
continue
|
| 134 |
for m in NAME_RX.finditer(sent):
|
| 135 |
cand = m.group(1).strip()
|
| 136 |
-
if ans_low in cand.lower():
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
if len(cand.split()) >= len(best.split()):
|
| 140 |
-
best = cand
|
| 141 |
return best
|
| 142 |
|
| 143 |
-
|
| 144 |
# =========================
|
| 145 |
-
# Vektör deposunu yükle
|
| 146 |
# =========================
|
| 147 |
-
def load_vectorstore() -> Tuple[faiss.Index, List[Dict]]:
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
raise FileNotFoundError(
|
| 152 |
"Vektör deposu bulunamadı. Önce `python data_preparation.py` çalıştırın:\n"
|
| 153 |
-
f"- {
|
| 154 |
)
|
| 155 |
|
| 156 |
-
index = faiss.read_index(
|
| 157 |
-
# HNSW ise efSearch ayarı
|
| 158 |
try:
|
| 159 |
-
index.hnsw.efSearch =
|
| 160 |
except Exception:
|
| 161 |
pass
|
| 162 |
|
| 163 |
records: List[Dict] = []
|
| 164 |
-
with open(
|
| 165 |
for line in f:
|
| 166 |
obj = json.loads(line)
|
| 167 |
records.append({
|
| 168 |
"text": obj.get("text", ""),
|
| 169 |
"metadata": obj.get("metadata", {}),
|
| 170 |
})
|
| 171 |
-
|
| 172 |
if not records:
|
| 173 |
raise RuntimeError("meta.jsonl boş görünüyor.")
|
| 174 |
return index, records
|
| 175 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
|
| 177 |
# =========================
|
| 178 |
# Retrieval + (koşullu) Rerank + title/lexical boost
|
| 179 |
# =========================
|
| 180 |
@lru_cache(maxsize=256)
|
| 181 |
def _cached_query_vec(e5_query: str) -> np.ndarray:
|
| 182 |
-
"""E5 sorgu embedding'ini cache'ler."""
|
| 183 |
v = embed([e5_query]).astype("float32")
|
| 184 |
return v
|
| 185 |
|
| 186 |
-
|
| 187 |
def search_chunks(
|
| 188 |
query: str,
|
| 189 |
index: faiss.Index,
|
|
@@ -208,11 +186,10 @@ def search_chunks(
|
|
| 208 |
"source": md.get("source", ""),
|
| 209 |
"score_vec": float(s),
|
| 210 |
})
|
| 211 |
-
|
| 212 |
if not pool:
|
| 213 |
return []
|
| 214 |
|
| 215 |
-
#
|
| 216 |
q_tokens = _keywords_from_query(q)
|
| 217 |
q_tokens_lower = [t.lower() for t in q_tokens]
|
| 218 |
for p in pool:
|
|
@@ -224,12 +201,11 @@ def search_chunks(
|
|
| 224 |
|
| 225 |
pool_by_boost = sorted(pool, key=lambda x: x["score_boosted"], reverse=True)
|
| 226 |
|
| 227 |
-
#
|
| 228 |
if len(pool_by_boost) >= 2:
|
| 229 |
top1, top2 = pool_by_boost[0]["score_boosted"], pool_by_boost[1]["score_boosted"]
|
| 230 |
else:
|
| 231 |
top1, top2 = pool_by_boost[0]["score_boosted"], 0.0
|
| 232 |
-
|
| 233 |
do_rerank = not (top1 >= HIGH_SCORE_THRES and (top1 - top2) >= MARGIN_THRES)
|
| 234 |
|
| 235 |
if do_rerank:
|
|
@@ -240,7 +216,6 @@ def search_chunks(
|
|
| 240 |
|
| 241 |
return pool_by_boost[:top_k]
|
| 242 |
|
| 243 |
-
|
| 244 |
# =========================
|
| 245 |
# LLM bağlamı ve kaynak listesi
|
| 246 |
# =========================
|
|
@@ -253,7 +228,6 @@ def _format_sources(hits: List[Dict]) -> str:
|
|
| 253 |
seen.add(u)
|
| 254 |
return "\n".join(f"- {u}" for u in urls) if urls else "- (yok)"
|
| 255 |
|
| 256 |
-
|
| 257 |
def _llm_context(hits: List[Dict], limit: int = CTX_CHAR_LIMIT) -> str:
|
| 258 |
ctx, total = [], 0
|
| 259 |
for i, h in enumerate(hits, 1):
|
|
@@ -264,9 +238,8 @@ def _llm_context(hits: List[Dict], limit: int = CTX_CHAR_LIMIT) -> str:
|
|
| 264 |
total += len(block)
|
| 265 |
return "\n\n---\n\n".join(ctx)
|
| 266 |
|
| 267 |
-
|
| 268 |
# =========================
|
| 269 |
-
# Nihai cevap
|
| 270 |
# =========================
|
| 271 |
def generate_answer(
|
| 272 |
query: str,
|
|
@@ -278,12 +251,12 @@ def generate_answer(
|
|
| 278 |
if not hits:
|
| 279 |
return "Bilgi bulunamadı."
|
| 280 |
|
| 281 |
-
#
|
| 282 |
rule_sent, rule_src = _extract_fact_sentence(query, hits)
|
| 283 |
if rule_sent:
|
| 284 |
return f"{rule_sent}\n\nKaynaklar:\n- {rule_src if rule_src else _format_sources(hits)}"
|
| 285 |
|
| 286 |
-
#
|
| 287 |
best = {"answer": None, "score": 0.0, "src": None}
|
| 288 |
for h in hits[:QA_PER_PASSAGES]:
|
| 289 |
try:
|
|
@@ -294,11 +267,8 @@ def generate_answer(
|
|
| 294 |
score = float(qa.get("score", 0.0))
|
| 295 |
ans = qa["answer"].strip()
|
| 296 |
|
| 297 |
-
# Cevap tarih/özel ad içeriyorsa ekstra güven
|
| 298 |
if re.search(r"\b(19\d{2}|20\d{2}|Atatürk|Gökçen|Kemal|Ankara|Fenerbahçe)\b", ans, flags=re.IGNORECASE):
|
| 299 |
score += 0.30
|
| 300 |
-
|
| 301 |
-
# Çok kısa veya eksik isimse → bağlamdan tam özel ada genişlet
|
| 302 |
if len(ans.split()) <= 2:
|
| 303 |
ans = _expand_named_span(ans, hits)
|
| 304 |
|
|
@@ -307,7 +277,6 @@ def generate_answer(
|
|
| 307 |
|
| 308 |
if best["answer"] and best["score"] >= QA_SCORE_THRES:
|
| 309 |
final = best["answer"].strip()
|
| 310 |
-
# Soru "kimdir/kim" ise doğal cümleye dök
|
| 311 |
if any(k in (query or "").lower() for k in ["kimdir", "kim"]):
|
| 312 |
if not final.endswith("."):
|
| 313 |
final += "."
|
|
@@ -315,7 +284,7 @@ def generate_answer(
|
|
| 315 |
src_line = f"Kaynaklar:\n- {best['src']}" if best["src"] else "Kaynaklar:\n" + _format_sources(hits)
|
| 316 |
return f"{final}\n\n{src_line}"
|
| 317 |
|
| 318 |
-
#
|
| 319 |
context = _llm_context(hits)
|
| 320 |
prompt = (
|
| 321 |
"Aşağıdaki BAĞLAM Wikipedia parçalarından alınmıştır.\n"
|
|
@@ -324,8 +293,6 @@ def generate_answer(
|
|
| 324 |
f"Soru:\n{query}\n\nBağlam:\n{context}\n\nYanıtı 1-2 cümlede ver."
|
| 325 |
)
|
| 326 |
llm_ans = (generate(prompt) or "").strip()
|
| 327 |
-
|
| 328 |
-
# 3) LLM yapılandırılmamışsa → güvenli özet fallback
|
| 329 |
if (not llm_ans) or ("yapılandırılmadı" in llm_ans.lower()):
|
| 330 |
text = hits[0].get("text", "")
|
| 331 |
first = re.split(r"(?<=[.!?])\s+", text.strip())[:2]
|
|
@@ -335,12 +302,11 @@ def generate_answer(
|
|
| 335 |
llm_ans += "\n\nKaynaklar:\n" + _format_sources(hits)
|
| 336 |
return llm_ans
|
| 337 |
|
| 338 |
-
|
| 339 |
# =========================
|
| 340 |
# Hızlı test
|
| 341 |
# =========================
|
| 342 |
if __name__ == "__main__":
|
| 343 |
-
idx, recs = load_vectorstore()
|
| 344 |
for q in [
|
| 345 |
"Atatürk ne zaman öldü?",
|
| 346 |
"Türkiye'nin ilk cumhurbaşkanı kimdir?",
|
|
|
|
| 8 |
|
| 9 |
from providers import embed, generate, rerank, qa_extract
|
| 10 |
|
|
|
|
| 11 |
# =========================
|
| 12 |
+
# Varsayılan dizin/isimler (istemci override edebilir)
|
| 13 |
# =========================
|
| 14 |
VSTORE_DIR = "vectorstore"
|
| 15 |
FAISS_FILE = "index.faiss"
|
| 16 |
META_JSONL = "meta.jsonl"
|
| 17 |
|
|
|
|
| 18 |
# =========================
|
| 19 |
# Hız / kalite ayarları
|
| 20 |
# =========================
|
| 21 |
+
TOP_K_DEFAULT = 4
|
| 22 |
+
FETCH_K_DEFAULT = 16
|
| 23 |
+
HNSW_EFSEARCH = 32
|
| 24 |
+
HIGH_SCORE_THRES = 0.78
|
| 25 |
+
MARGIN_THRES = 0.06
|
| 26 |
|
| 27 |
+
CTX_CHAR_LIMIT = 1400
|
| 28 |
+
QA_SCORE_THRES = 0.25
|
| 29 |
+
QA_PER_PASSAGES = 4
|
| 30 |
|
|
|
|
| 31 |
W_TITLE_BOOST = 0.25
|
| 32 |
W_LEXICAL = 0.15
|
| 33 |
|
|
|
|
| 34 |
# =========================
|
| 35 |
+
# Kural-tabanlı çıkarım yardımcıları
|
| 36 |
# =========================
|
| 37 |
DATE_RX = re.compile(
|
| 38 |
r"\b(\d{1,2}\s+(Ocak|Şubat|Mart|Nisan|Mayıs|Haziran|Temmuz|Ağustos|Eylül|Ekim|Kasım|Aralık)\s+\d{3,4}"
|
|
|
|
| 40 |
r"|\d{4})\b",
|
| 41 |
flags=re.IGNORECASE
|
| 42 |
)
|
|
|
|
| 43 |
DEATH_KEYS = ["öldü", "vefat", "hayatını kaybet", "ölümü", "ölüm"]
|
| 44 |
FOUND_KEYS = ["kuruldu", "kuruluş", "kurulmuştur", "kuruluşu", "kuruluş tarihi"]
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
def _split_sentences(txt: str) -> List[str]:
|
| 47 |
parts = re.split(r"(?<=[.!?])\s+", (txt or "").strip())
|
| 48 |
return [p.strip() for p in parts if p.strip()]
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
def _extract_fact_sentence(query: str, hits: List[Dict]) -> Tuple[str, str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
q = (query or "").lower()
|
| 52 |
if "ne zaman" not in q:
|
| 53 |
return "", ""
|
|
|
|
| 54 |
if any(k in q for k in DEATH_KEYS):
|
| 55 |
keylist = DEATH_KEYS
|
| 56 |
elif any(k in q for k in ["kuruldu", "kuruluş"]):
|
|
|
|
| 64 |
return s, h.get("source", "")
|
| 65 |
return "", ""
|
| 66 |
|
| 67 |
+
# =========================
|
| 68 |
+
# İsim normalizasyonu (kısa span → tam özel ad)
|
| 69 |
+
# =========================
|
| 70 |
+
NAME_RX = re.compile(r"\b([A-ZÇĞİIÖŞÜ][a-zçğıiöşü]+(?:\s+[A-ZÇĞİIÖŞÜ][a-zçğıiöşü]+){0,3})\b")
|
| 71 |
|
| 72 |
def _expand_named_span(answer: str, hits: List[Dict]) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
ans = (answer or "").strip()
|
| 74 |
if not ans or len(ans.split()) > 2:
|
| 75 |
return ans
|
|
|
|
| 76 |
ans_low = ans.lower()
|
| 77 |
|
|
|
|
| 78 |
preferred_aliases = [
|
| 79 |
"Mustafa Kemal Atatürk",
|
| 80 |
"Sabiha Gökçen",
|
|
|
|
| 89 |
best = ans
|
| 90 |
for h in hits:
|
| 91 |
for sent in _split_sentences(h.get("text", "")):
|
| 92 |
+
if ans_low not in sent.lower():
|
| 93 |
continue
|
| 94 |
for m in NAME_RX.finditer(sent):
|
| 95 |
cand = m.group(1).strip()
|
| 96 |
+
if ans_low in cand.lower() and any(ch.islower() for ch in cand):
|
| 97 |
+
if len(cand.split()) >= len(best.split()):
|
| 98 |
+
best = cand
|
|
|
|
|
|
|
| 99 |
return best
|
| 100 |
|
|
|
|
| 101 |
# =========================
|
| 102 |
+
# Vektör deposunu yükle (PARAMETRELİ)
|
| 103 |
# =========================
|
| 104 |
+
def load_vectorstore(vstore_dir: str = "vectorstore") -> Tuple[faiss.Index, List[Dict]]:
|
| 105 |
+
"""Hugging Face Spaces gibi ortamlarda da kullanılabilsin diye
|
| 106 |
+
vektör deposu kök dizini parametre olarak alınır.
|
| 107 |
+
"""
|
| 108 |
+
faiss_file = os.path.join(vstore_dir, "index.faiss")
|
| 109 |
+
meta_file = os.path.join(vstore_dir, "meta.jsonl")
|
| 110 |
+
|
| 111 |
+
if not (os.path.exists(faiss_file) and os.path.exists(meta_file)):
|
| 112 |
raise FileNotFoundError(
|
| 113 |
"Vektör deposu bulunamadı. Önce `python data_preparation.py` çalıştırın:\n"
|
| 114 |
+
f"- {faiss_file}\n- {meta_file}"
|
| 115 |
)
|
| 116 |
|
| 117 |
+
index = faiss.read_index(faiss_file)
|
|
|
|
| 118 |
try:
|
| 119 |
+
index.hnsw.efSearch = HNSW_EFSEARCH
|
| 120 |
except Exception:
|
| 121 |
pass
|
| 122 |
|
| 123 |
records: List[Dict] = []
|
| 124 |
+
with open(meta_file, "r", encoding="utf-8") as f:
|
| 125 |
for line in f:
|
| 126 |
obj = json.loads(line)
|
| 127 |
records.append({
|
| 128 |
"text": obj.get("text", ""),
|
| 129 |
"metadata": obj.get("metadata", {}),
|
| 130 |
})
|
|
|
|
| 131 |
if not records:
|
| 132 |
raise RuntimeError("meta.jsonl boş görünüyor.")
|
| 133 |
return index, records
|
| 134 |
|
| 135 |
+
# =========================
|
| 136 |
+
# Anahtar kelime çıkarımı + lexical puan
|
| 137 |
+
# =========================
|
| 138 |
+
_CAP_WORD = re.compile(r"\b([A-ZÇĞİIÖŞÜ][a-zçğıiöşü]+(?:\s+[A-ZÇĞİIÖŞÜ][a-zçğıiöşü]+)*)\b")
|
| 139 |
+
|
| 140 |
+
def _keywords_from_query(q: str) -> List[str]:
|
| 141 |
+
q = (q or "").strip()
|
| 142 |
+
caps = [m.group(1) for m in _CAP_WORD.finditer(q)]
|
| 143 |
+
nums = re.findall(r"\b\d{3,4}\b", q)
|
| 144 |
+
base = [w.lower() for w in re.findall(r"[A-Za-zÇĞİIÖŞÜçğıiöşü]+", q) if len(w) > 2]
|
| 145 |
+
return list(dict.fromkeys(caps + nums + base))
|
| 146 |
+
|
| 147 |
+
def _lexical_overlap(q_tokens: List[str], text: str) -> float:
|
| 148 |
+
toks = re.findall(r"[A-Za-zÇĞİIÖŞÜçğıiöşü]+", (text or "").lower())
|
| 149 |
+
if not toks:
|
| 150 |
+
return 0.0
|
| 151 |
+
qset = set([t for t in q_tokens if len(t) > 2])
|
| 152 |
+
tset = set([t for t in toks if len(t) > 2])
|
| 153 |
+
inter = len(qset & tset)
|
| 154 |
+
denom = len(qset) or 1
|
| 155 |
+
return inter / denom
|
| 156 |
|
| 157 |
# =========================
|
| 158 |
# Retrieval + (koşullu) Rerank + title/lexical boost
|
| 159 |
# =========================
|
| 160 |
@lru_cache(maxsize=256)
|
| 161 |
def _cached_query_vec(e5_query: str) -> np.ndarray:
|
|
|
|
| 162 |
v = embed([e5_query]).astype("float32")
|
| 163 |
return v
|
| 164 |
|
|
|
|
| 165 |
def search_chunks(
|
| 166 |
query: str,
|
| 167 |
index: faiss.Index,
|
|
|
|
| 186 |
"source": md.get("source", ""),
|
| 187 |
"score_vec": float(s),
|
| 188 |
})
|
|
|
|
| 189 |
if not pool:
|
| 190 |
return []
|
| 191 |
|
| 192 |
+
# title & lexical boost
|
| 193 |
q_tokens = _keywords_from_query(q)
|
| 194 |
q_tokens_lower = [t.lower() for t in q_tokens]
|
| 195 |
for p in pool:
|
|
|
|
| 201 |
|
| 202 |
pool_by_boost = sorted(pool, key=lambda x: x["score_boosted"], reverse=True)
|
| 203 |
|
| 204 |
+
# erken karar
|
| 205 |
if len(pool_by_boost) >= 2:
|
| 206 |
top1, top2 = pool_by_boost[0]["score_boosted"], pool_by_boost[1]["score_boosted"]
|
| 207 |
else:
|
| 208 |
top1, top2 = pool_by_boost[0]["score_boosted"], 0.0
|
|
|
|
| 209 |
do_rerank = not (top1 >= HIGH_SCORE_THRES and (top1 - top2) >= MARGIN_THRES)
|
| 210 |
|
| 211 |
if do_rerank:
|
|
|
|
| 216 |
|
| 217 |
return pool_by_boost[:top_k]
|
| 218 |
|
|
|
|
| 219 |
# =========================
|
| 220 |
# LLM bağlamı ve kaynak listesi
|
| 221 |
# =========================
|
|
|
|
| 228 |
seen.add(u)
|
| 229 |
return "\n".join(f"- {u}" for u in urls) if urls else "- (yok)"
|
| 230 |
|
|
|
|
| 231 |
def _llm_context(hits: List[Dict], limit: int = CTX_CHAR_LIMIT) -> str:
|
| 232 |
ctx, total = [], 0
|
| 233 |
for i, h in enumerate(hits, 1):
|
|
|
|
| 238 |
total += len(block)
|
| 239 |
return "\n\n---\n\n".join(ctx)
|
| 240 |
|
|
|
|
| 241 |
# =========================
|
| 242 |
+
# Nihai cevap
|
| 243 |
# =========================
|
| 244 |
def generate_answer(
|
| 245 |
query: str,
|
|
|
|
| 251 |
if not hits:
|
| 252 |
return "Bilgi bulunamadı."
|
| 253 |
|
| 254 |
+
# kural-tabanlı ilk hamle
|
| 255 |
rule_sent, rule_src = _extract_fact_sentence(query, hits)
|
| 256 |
if rule_sent:
|
| 257 |
return f"{rule_sent}\n\nKaynaklar:\n- {rule_src if rule_src else _format_sources(hits)}"
|
| 258 |
|
| 259 |
+
# ekstraktif QA
|
| 260 |
best = {"answer": None, "score": 0.0, "src": None}
|
| 261 |
for h in hits[:QA_PER_PASSAGES]:
|
| 262 |
try:
|
|
|
|
| 267 |
score = float(qa.get("score", 0.0))
|
| 268 |
ans = qa["answer"].strip()
|
| 269 |
|
|
|
|
| 270 |
if re.search(r"\b(19\d{2}|20\d{2}|Atatürk|Gökçen|Kemal|Ankara|Fenerbahçe)\b", ans, flags=re.IGNORECASE):
|
| 271 |
score += 0.30
|
|
|
|
|
|
|
| 272 |
if len(ans.split()) <= 2:
|
| 273 |
ans = _expand_named_span(ans, hits)
|
| 274 |
|
|
|
|
| 277 |
|
| 278 |
if best["answer"] and best["score"] >= QA_SCORE_THRES:
|
| 279 |
final = best["answer"].strip()
|
|
|
|
| 280 |
if any(k in (query or "").lower() for k in ["kimdir", "kim"]):
|
| 281 |
if not final.endswith("."):
|
| 282 |
final += "."
|
|
|
|
| 284 |
src_line = f"Kaynaklar:\n- {best['src']}" if best["src"] else "Kaynaklar:\n" + _format_sources(hits)
|
| 285 |
return f"{final}\n\n{src_line}"
|
| 286 |
|
| 287 |
+
# LLM fallback
|
| 288 |
context = _llm_context(hits)
|
| 289 |
prompt = (
|
| 290 |
"Aşağıdaki BAĞLAM Wikipedia parçalarından alınmıştır.\n"
|
|
|
|
| 293 |
f"Soru:\n{query}\n\nBağlam:\n{context}\n\nYanıtı 1-2 cümlede ver."
|
| 294 |
)
|
| 295 |
llm_ans = (generate(prompt) or "").strip()
|
|
|
|
|
|
|
| 296 |
if (not llm_ans) or ("yapılandırılmadı" in llm_ans.lower()):
|
| 297 |
text = hits[0].get("text", "")
|
| 298 |
first = re.split(r"(?<=[.!?])\s+", text.strip())[:2]
|
|
|
|
| 302 |
llm_ans += "\n\nKaynaklar:\n" + _format_sources(hits)
|
| 303 |
return llm_ans
|
| 304 |
|
|
|
|
| 305 |
# =========================
|
| 306 |
# Hızlı test
|
| 307 |
# =========================
|
| 308 |
if __name__ == "__main__":
|
| 309 |
+
idx, recs = load_vectorstore(VSTORE_DIR)
|
| 310 |
for q in [
|
| 311 |
"Atatürk ne zaman öldü?",
|
| 312 |
"Türkiye'nin ilk cumhurbaşkanı kimdir?",
|