Spaces:
				
			
			
	
			
			
					
		Running
		
			on 
			
			CPU Upgrade
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
			on 
			
			CPU Upgrade
	Commit 
							
							·
						
						6da7311
	
1
								Parent(s):
							
							fbd2a73
								
Add new column: Main Language
Browse files- .gitignore +1 -0
- app.py +26 -5
- initial_queue.jsonl +196 -196
- src/display/utils.py +24 -1
- src/leaderboard/read_evals.py +6 -2
- src/submission/submit.py +3 -1
    	
        .gitignore
    CHANGED
    
    | @@ -17,3 +17,4 @@ downloads/ | |
| 17 | 
             
            tasks_config/legal_config.yaml
         | 
| 18 |  | 
| 19 | 
             
            src/assets/model_counts.html
         | 
|  | 
|  | |
| 17 | 
             
            tasks_config/legal_config.yaml
         | 
| 18 |  | 
| 19 | 
             
            src/assets/model_counts.html
         | 
| 20 | 
            +
            languages.jsonl
         | 
    	
        app.py
    CHANGED
    
    | @@ -29,7 +29,8 @@ from src.display.utils import ( | |
| 29 | 
             
                fields,
         | 
| 30 | 
             
                WeightType,
         | 
| 31 | 
             
                Precision,
         | 
| 32 | 
            -
                Tasks
         | 
|  | |
| 33 | 
             
            )
         | 
| 34 | 
             
            from src.envs import (
         | 
| 35 | 
             
                API,
         | 
| @@ -125,10 +126,11 @@ def update_table( | |
| 125 | 
             
                type_query: list,
         | 
| 126 | 
             
                precision_query: str,
         | 
| 127 | 
             
                size_query: list,
         | 
|  | |
| 128 | 
             
                hide_models: list,
         | 
| 129 | 
             
                query: str,
         | 
| 130 | 
             
            ):
         | 
| 131 | 
            -
                filtered_df = filter_models(df=hidden_df, type_query=type_query, size_query=size_query, precision_query=precision_query, hide_models=hide_models)
         | 
| 132 | 
             
                filtered_df = filter_queries(query, filtered_df)
         | 
| 133 | 
             
                filtered_df = update_leaderboard_avg_scores(filtered_df, columns)
         | 
| 134 | 
             
                df = select_columns(filtered_df, columns)
         | 
| @@ -177,7 +179,7 @@ def filter_queries(query: str, filtered_df: pd.DataFrame): | |
| 177 |  | 
| 178 |  | 
| 179 | 
             
            def filter_models(
         | 
| 180 | 
            -
                df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, hide_models: list
         | 
| 181 | 
             
            ) -> pd.DataFrame:
         | 
| 182 | 
             
                # Show all models
         | 
| 183 | 
             
                if "Private or deleted" in hide_models:
         | 
| @@ -197,6 +199,7 @@ def filter_models( | |
| 197 | 
             
                type_emoji = [t[0] for t in type_query]
         | 
| 198 | 
             
                filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
         | 
| 199 | 
             
                filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
         | 
|  | |
| 200 |  | 
| 201 | 
             
                numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
         | 
| 202 | 
             
                params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
         | 
| @@ -225,6 +228,7 @@ leaderboard_df = filter_models( | |
| 225 | 
             
                type_query=[t.to_str(" : ") for t in ModelType], 
         | 
| 226 | 
             
                size_query=list(NUMERIC_INTERVALS.keys()), 
         | 
| 227 | 
             
                precision_query=[i.value.name for i in Precision],
         | 
|  | |
| 228 | 
             
                hide_models=["Contains a merge/moerge", "Flagged"], # "Private or deleted", "Contains a merge/moerge", "Flagged"
         | 
| 229 | 
             
            )
         | 
| 230 |  | 
| @@ -289,6 +293,13 @@ with demo: | |
| 289 | 
             
                                    interactive=True,
         | 
| 290 | 
             
                                    elem_id="filter-columns-size",
         | 
| 291 | 
             
                                )
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 292 |  | 
| 293 | 
             
                        leaderboard_table = gr.components.Dataframe(
         | 
| 294 | 
             
                            value=leaderboard_df[
         | 
| @@ -319,6 +330,7 @@ with demo: | |
| 319 | 
             
                                filter_columns_type,
         | 
| 320 | 
             
                                filter_columns_precision,
         | 
| 321 | 
             
                                filter_columns_size,
         | 
|  | |
| 322 | 
             
                                hide_models,
         | 
| 323 | 
             
                                search_bar,
         | 
| 324 | 
             
                            ],
         | 
| @@ -335,6 +347,7 @@ with demo: | |
| 335 | 
             
                                filter_columns_type,
         | 
| 336 | 
             
                                filter_columns_precision,
         | 
| 337 | 
             
                                filter_columns_size,
         | 
|  | |
| 338 | 
             
                                hide_models,
         | 
| 339 | 
             
                                search_bar,
         | 
| 340 | 
             
                            ],
         | 
| @@ -343,7 +356,7 @@ with demo: | |
| 343 | 
             
                        # Check query parameter once at startup and update search bar + hidden component
         | 
| 344 | 
             
                        demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar])
         | 
| 345 |  | 
| 346 | 
            -
                        for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, hide_models]:
         | 
| 347 | 
             
                            selector.change(
         | 
| 348 | 
             
                                update_table,
         | 
| 349 | 
             
                                [
         | 
| @@ -352,6 +365,7 @@ with demo: | |
| 352 | 
             
                                    filter_columns_type,
         | 
| 353 | 
             
                                    filter_columns_precision,
         | 
| 354 | 
             
                                    filter_columns_size,
         | 
|  | |
| 355 | 
             
                                    hide_models,
         | 
| 356 | 
             
                                    search_bar,
         | 
| 357 | 
             
                                ],
         | 
| @@ -455,6 +469,13 @@ with demo: | |
| 455 | 
             
                                    value=ModelType.FT.to_str(" : "),
         | 
| 456 | 
             
                                    interactive=True,
         | 
| 457 | 
             
                                )
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 458 |  | 
| 459 | 
             
                            with gr.Column():
         | 
| 460 | 
             
                                precision = gr.Dropdown(
         | 
| @@ -472,7 +493,6 @@ with demo: | |
| 472 | 
             
                                    interactive=True,
         | 
| 473 | 
             
                                )
         | 
| 474 | 
             
                                base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
         | 
| 475 | 
            -
             | 
| 476 | 
             
                        submit_button = gr.Button("Submit Eval")
         | 
| 477 | 
             
                        submission_result = gr.Markdown()
         | 
| 478 | 
             
                        submit_button.click(
         | 
| @@ -485,6 +505,7 @@ with demo: | |
| 485 | 
             
                                private,
         | 
| 486 | 
             
                                weight_type,
         | 
| 487 | 
             
                                model_type,
         | 
|  | |
| 488 | 
             
                            ],
         | 
| 489 | 
             
                            submission_result,
         | 
| 490 | 
             
                        )
         | 
|  | |
| 29 | 
             
                fields,
         | 
| 30 | 
             
                WeightType,
         | 
| 31 | 
             
                Precision,
         | 
| 32 | 
            +
                Tasks,
         | 
| 33 | 
            +
                Language
         | 
| 34 | 
             
            )
         | 
| 35 | 
             
            from src.envs import (
         | 
| 36 | 
             
                API,
         | 
|  | |
| 126 | 
             
                type_query: list,
         | 
| 127 | 
             
                precision_query: str,
         | 
| 128 | 
             
                size_query: list,
         | 
| 129 | 
            +
                language_query: list,
         | 
| 130 | 
             
                hide_models: list,
         | 
| 131 | 
             
                query: str,
         | 
| 132 | 
             
            ):
         | 
| 133 | 
            +
                filtered_df = filter_models(df=hidden_df, type_query=type_query, size_query=size_query, language_query=language_query, precision_query=precision_query, hide_models=hide_models)
         | 
| 134 | 
             
                filtered_df = filter_queries(query, filtered_df)
         | 
| 135 | 
             
                filtered_df = update_leaderboard_avg_scores(filtered_df, columns)
         | 
| 136 | 
             
                df = select_columns(filtered_df, columns)
         | 
|  | |
| 179 |  | 
| 180 |  | 
| 181 | 
             
            def filter_models(
         | 
| 182 | 
            +
                df: pd.DataFrame, type_query: list, size_query: list, language_query: list, precision_query: list, hide_models: list
         | 
| 183 | 
             
            ) -> pd.DataFrame:
         | 
| 184 | 
             
                # Show all models
         | 
| 185 | 
             
                if "Private or deleted" in hide_models:
         | 
|  | |
| 199 | 
             
                type_emoji = [t[0] for t in type_query]
         | 
| 200 | 
             
                filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
         | 
| 201 | 
             
                filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
         | 
| 202 | 
            +
                filtered_df = filtered_df.loc[df[AutoEvalColumn.main_language.name].isin(language_query + ["None"])]
         | 
| 203 |  | 
| 204 | 
             
                numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
         | 
| 205 | 
             
                params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
         | 
|  | |
| 228 | 
             
                type_query=[t.to_str(" : ") for t in ModelType], 
         | 
| 229 | 
             
                size_query=list(NUMERIC_INTERVALS.keys()), 
         | 
| 230 | 
             
                precision_query=[i.value.name for i in Precision],
         | 
| 231 | 
            +
                language_query=[i.value.name for i in Language],
         | 
| 232 | 
             
                hide_models=["Contains a merge/moerge", "Flagged"], # "Private or deleted", "Contains a merge/moerge", "Flagged"
         | 
| 233 | 
             
            )
         | 
| 234 |  | 
|  | |
| 293 | 
             
                                    interactive=True,
         | 
| 294 | 
             
                                    elem_id="filter-columns-size",
         | 
| 295 | 
             
                                )
         | 
| 296 | 
            +
                                filter_columns_language = gr.CheckboxGroup(
         | 
| 297 | 
            +
                                    label="Model Main Language",
         | 
| 298 | 
            +
                                    choices=[i.value.name for i in Language],
         | 
| 299 | 
            +
                                    value=[i.value.name for i in Language],
         | 
| 300 | 
            +
                                    interactive=True,
         | 
| 301 | 
            +
                                    elem_id="filter-columns-language",
         | 
| 302 | 
            +
                                )
         | 
| 303 |  | 
| 304 | 
             
                        leaderboard_table = gr.components.Dataframe(
         | 
| 305 | 
             
                            value=leaderboard_df[
         | 
|  | |
| 330 | 
             
                                filter_columns_type,
         | 
| 331 | 
             
                                filter_columns_precision,
         | 
| 332 | 
             
                                filter_columns_size,
         | 
| 333 | 
            +
                                filter_columns_language,
         | 
| 334 | 
             
                                hide_models,
         | 
| 335 | 
             
                                search_bar,
         | 
| 336 | 
             
                            ],
         | 
|  | |
| 347 | 
             
                                filter_columns_type,
         | 
| 348 | 
             
                                filter_columns_precision,
         | 
| 349 | 
             
                                filter_columns_size,
         | 
| 350 | 
            +
                                filter_columns_language,
         | 
| 351 | 
             
                                hide_models,
         | 
| 352 | 
             
                                search_bar,
         | 
| 353 | 
             
                            ],
         | 
|  | |
| 356 | 
             
                        # Check query parameter once at startup and update search bar + hidden component
         | 
| 357 | 
             
                        demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar])
         | 
| 358 |  | 
| 359 | 
            +
                        for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, filter_columns_language, hide_models]:
         | 
| 360 | 
             
                            selector.change(
         | 
| 361 | 
             
                                update_table,
         | 
| 362 | 
             
                                [
         | 
|  | |
| 365 | 
             
                                    filter_columns_type,
         | 
| 366 | 
             
                                    filter_columns_precision,
         | 
| 367 | 
             
                                    filter_columns_size,
         | 
| 368 | 
            +
                                    filter_columns_language,
         | 
| 369 | 
             
                                    hide_models,
         | 
| 370 | 
             
                                    search_bar,
         | 
| 371 | 
             
                                ],
         | 
|  | |
| 469 | 
             
                                    value=ModelType.FT.to_str(" : "),
         | 
| 470 | 
             
                                    interactive=True,
         | 
| 471 | 
             
                                )
         | 
| 472 | 
            +
                                main_language = gr.Dropdown(
         | 
| 473 | 
            +
                                    choices=[i.value.name for i in Language if i != Language.Unknown],
         | 
| 474 | 
            +
                                    label="Main Language",
         | 
| 475 | 
            +
                                    multiselect=False,
         | 
| 476 | 
            +
                                    value="English",
         | 
| 477 | 
            +
                                    interactive=True,
         | 
| 478 | 
            +
                                )
         | 
| 479 |  | 
| 480 | 
             
                            with gr.Column():
         | 
| 481 | 
             
                                precision = gr.Dropdown(
         | 
|  | |
| 493 | 
             
                                    interactive=True,
         | 
| 494 | 
             
                                )
         | 
| 495 | 
             
                                base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
         | 
|  | |
| 496 | 
             
                        submit_button = gr.Button("Submit Eval")
         | 
| 497 | 
             
                        submission_result = gr.Markdown()
         | 
| 498 | 
             
                        submit_button.click(
         | 
|  | |
| 505 | 
             
                                private,
         | 
| 506 | 
             
                                weight_type,
         | 
| 507 | 
             
                                model_type,
         | 
| 508 | 
            +
                                main_language
         | 
| 509 | 
             
                            ],
         | 
| 510 | 
             
                            submission_result,
         | 
| 511 | 
             
                        )
         | 
    	
        initial_queue.jsonl
    CHANGED
    
    | @@ -1,215 +1,215 @@ | |
| 1 | 
             
            // 1- base models <=7B
         | 
| 2 | 
            -
            {"model": "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 3 | 
            -
            {"model": "meta-llama/Llama-2-7b-hf", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 4 | 
            -
            {"model": "mistralai/Mistral-7B-v0.1", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 5 | 
            -
            {"model": "huggyllama/llama-7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 6 | 
            -
            {"model": "openlm-research/open_llama_3b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 7 | 
            -
            {"model": "openlm-research/open_llama_3b_v2", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 8 | 
            -
            {"model": "openlm-research/open_llama_7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 9 | 
            -
            {"model": "openlm-research/open_llama_7b_v2", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 10 | 
             
            // 2 - Larger base models <= 13B
         | 
| 11 | 
            -
            {"model": "meta-llama/Llama-2-13b-hf", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 12 | 
            -
            {"model": "huggyllama/llama-13b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 13 | 
            -
            {"model": "openlm-research/open_llama_13b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 14 | 
            -
            {"model": "upstage/SOLAR-10.7B-v1.0", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 15 | 
             
            // 3 - portuguese models
         | 
| 16 | 
            -
            {"model": "maritaca-ai/sabia-7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
         | 
| 17 | 
            -
            {"model": "dominguesm/canarim-7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
         | 
| 18 | 
            -
            {"model": "22h/open-cabrita3b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
         | 
| 19 | 
            -
            {"model": "recogna-nlp/bode-7b-alpaca-pt-br", "base_model": "meta-llama/Llama-2-7b-chat-hf", "revision": "main", "precision": "float16", "weight_type": "Adapter", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)"}
         | 
| 20 | 
            -
            {"model": "recogna-nlp/bode-13b-alpaca-pt-br", "base_model": "meta-llama/Llama-2-13b-chat-hf", "revision": "main", "precision": "float16", "weight_type": "Adapter", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)"}
         | 
| 21 | 
            -
            {"model": "22h/cabrita_7b_pt_850000", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
         | 
| 22 | 
            -
            {"model": "22h/cabrita-lora-v0-1", "base_model": "huggyllama/llama-7b", "revision": "main", "precision": "float16", "weight_type": "Adapter", "model_type": "🔶 : fine-tuned"}
         | 
| 23 | 
            -
            {"model": "wandgibaut/periquito-3B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
         | 
| 24 | 
            -
            {"model": "nicolasdec/Cabra", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)"}
         | 
| 25 | 
            -
            {"model": "nicolasdec/cabra13b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)"}
         | 
| 26 | 
            -
            {"model": "lrds-code/samba-1.1B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)"}
         | 
| 27 | 
            -
            {"model": "lrds-code/boana-7b-instruct", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)"}
         | 
| 28 | 
            -
            {"model": "nicholasKluge/Aira-2-portuguese-124M", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)"}
         | 
| 29 | 
            -
            {"model": "nicholasKluge/Aira-2-portuguese-560M", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)"}
         | 
| 30 | 
            -
            {"model": "nicholasKluge/Aira-2-portuguese-1B7", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)"}
         | 
| 31 | 
             
            // other must-have <=7B
         | 
| 32 | 
            -
            {"model": "dynamofl/dynamo-8B-v0.1", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
         | 
| 33 | 
            -
            {"model": "01-ai/Yi-6B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 34 | 
            -
            {"model": "Unbabel/TowerBase-7B-v0.1", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
         | 
| 35 | 
            -
            {"model": "tiiuae/falcon-7b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 36 | 
            -
            {"model": "bigscience/bloom-560m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 37 | 
            -
            {"model": "bigscience/bloom-1b7", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 38 | 
            -
            {"model": "bigscience/bloom-3b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 39 | 
            -
            {"model": "bigscience/bloom-7b1", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 40 | 
            -
            {"model": "stabilityai/stablelm-2-1_6b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 41 | 
            -
            {"model": "stabilityai/stablelm-3b-4e1t", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 42 | 
             
            // Larger base models >13B
         | 
| 43 | 
            -
            {"model": "mistralai/Mixtral-8x7B-v0.1", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 44 | 
            -
            {"model": "huggyllama/llama-30b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 45 | 
            -
            {"model": "01-ai/Yi-34B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 46 | 
            -
            {"model": "meta-llama/Llama-2-70b-hf", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 47 | 
            -
            {"model": "huggyllama/llama-65b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 48 | 
             
            // minors must
         | 
| 49 | 
            -
            {"model": "togethercomputer/RedPajama-INCITE-Base-3B-v1", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 50 | 
            -
            {"model": "togethercomputer/RedPajama-INCITE-7B-Base", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 51 | 
            -
            {"model": "DAMO-NLP-MT/polylm-1.7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 52 | 
            -
            {"model": "DAMO-NLP-MT/polylm-13b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 53 | 
            -
            {"model": "Deci/DeciLM-6b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🔶 : fine-tuned"}
         | 
| 54 | 
            -
            {"model": "Deci/DeciLM-7B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🔶 : fine-tuned"}
         | 
| 55 | 
             
            // multiple (ch-jp)/en bi/multi lingual models
         | 
| 56 | 
            -
            {"model": "internlm/internlm2-7b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🔶 : fine-tuned"}
         | 
| 57 | 
            -
            {"model": "internlm/internlm2-base-7b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 58 | 
            -
            {"model": "internlm/internlm-7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 59 | 
            -
            {"model": "internlm/internlm2-20b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🔶 : fine-tuned"}
         | 
| 60 | 
            -
            {"model": "internlm/internlm2-base-20b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 61 | 
            -
            {"model": "internlm/internlm-20b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 62 | 
            -
            {"model": "Qwen/Qwen-1_8B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 63 | 
            -
            {"model": "Qwen/Qwen-7B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 64 | 
            -
            {"model": "Qwen/Qwen-14B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 65 | 
            -
            {"model": "xverse/XVERSE-7B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 66 | 
            -
            {"model": "xverse/XVERSE-13B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 67 | 
            -
            {"model": "xverse/XVERSE-13B-256K", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 68 | 
            -
            {"model": "Skywork/Skywork-13B-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 69 | 
            -
            {"model": "baichuan-inc/Baichuan-7B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 70 | 
            -
            {"model": "baichuan-inc/Baichuan-13B-Base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 71 | 
            -
            {"model": "baichuan-inc/Baichuan2-7B-Base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 72 | 
            -
            {"model": "baichuan-inc/Baichuan2-13B-Base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 73 | 
            -
            {"model": "OrionStarAI/Orion-14B-Base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 74 | 
            -
            {"model": "deepseek-ai/deepseek-llm-7b-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 75 | 
            -
            {"model": "deepseek-ai/deepseek-moe-16b-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 76 | 
            -
            {"model": "BAAI/Aquila-7B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 77 | 
            -
            {"model": "BAAI/Aquila2-7B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 78 | 
            -
            {"model": "THUDM/chatglm3-6b-base", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 79 | 
            -
            {"model": "THUDM/glm-2b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 80 | 
            -
            {"model": "THUDM/glm-10b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 81 | 
            -
            {"model": "fnlp/moss-moon-003-base", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 82 | 
            -
            {"model": "fnlp/moss-base-7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 83 | 
             
            // multiple chinese/jp large
         | 
| 84 | 
            -
            {"model": "Qwen/Qwen-72B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 85 | 
            -
            {"model": "xverse/XVERSE-65B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 86 | 
            -
            {"model": "xverse/XVERSE-65B-2", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 87 | 
            -
            {"model": "deepseek-ai/deepseek-llm-67b-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 88 | 
            -
            {"model": "BAAI/Aquila2-34B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 89 | 
            -
            {"model": "BAAI/Aquila2-70B-Expr", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 90 | 
             
            // minors must 2
         | 
| 91 | 
            -
            {"model": "gpt2", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 92 | 
            -
            {"model": "t5-small", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 93 | 
            -
            {"model": "t5-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 94 | 
            -
            {"model": "t5-large", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 95 | 
            -
            {"model": "google/mt5-small", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 96 | 
            -
            {"model": "google/mt5-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 97 | 
            -
            {"model": "google/mt5-large", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 98 | 
             
            //others
         | 
| 99 | 
            -
            {"model": "NucleusAI/nucleus-22B-token-500B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 100 | 
            -
            {"model": "EleutherAI/pythia-14m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 101 | 
            -
            {"model": "EleutherAI/pythia-70m-deduped", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 102 | 
            -
            {"model": "EleutherAI/pythia-160m-deduped", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 103 | 
            -
            {"model": "EleutherAI/pythia-410m-deduped", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 104 | 
            -
            {"model": "EleutherAI/pythia-1b-deduped", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 105 | 
            -
            {"model": "EleutherAI/pythia-2.8b-deduped", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 106 | 
            -
            {"model": "EleutherAI/pythia-6.9b-deduped", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 107 | 
            -
            {"model": "EleutherAI/pythia-12b-deduped", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 108 | 
            -
            {"model": "EleutherAI/gpt-neo-125m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 109 | 
            -
            {"model": "EleutherAI/gpt-neo-1.3B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 110 | 
            -
            {"model": "EleutherAI/gpt-neo-2.7B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 111 | 
            -
            {"model": "EleutherAI/gpt-j-6b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 112 | 
            -
            {"model": "EleutherAI/gpt-neox-20b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 113 | 
            -
            {"model": "facebook/opt-125m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 114 | 
            -
            {"model": "facebook/opt-350m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 115 | 
            -
            {"model": "facebook/opt-1.3b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 116 | 
            -
            {"model": "facebook/opt-2.7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 117 | 
            -
            {"model": "facebook/opt-6.7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 118 | 
            -
            {"model": "facebook/opt-13b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 119 | 
            -
            {"model": "facebook/opt-30b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 120 | 
             
            //other large
         | 
| 121 | 
            -
            {"model": "facebook/opt-66b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 122 | 
            -
            {"model": "tiiuae/falcon-40b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 123 | 
             
            // minors portuguese
         | 
| 124 | 
            -
            {"model": "pierreguillou/gpt2-small-portuguese", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
         | 
| 125 | 
            -
            {"model": "pucpr/gpt2-bio-pt", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
         | 
| 126 | 
            -
            {"model": "unicamp-dl/ptt5-small-portuguese-vocab", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
         | 
| 127 | 
            -
            {"model": "unicamp-dl/ptt5-base-portuguese-vocab", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
         | 
| 128 | 
            -
            {"model": "unicamp-dl/ptt5-large-portuguese-vocab", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
         | 
| 129 | 
            -
            {"model": "unicamp-dl/ptt5-small-t5-vocab", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
         | 
| 130 | 
            -
            {"model": "unicamp-dl/ptt5-base-t5-vocab", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
         | 
| 131 | 
            -
            {"model": "unicamp-dl/ptt5-large-t5-vocab", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
         | 
| 132 | 
            -
            {"model": "josu/gpt-neo-pt-br", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
         | 
| 133 | 
            -
            {"model": "josu/gpt-neo-pt-1.3B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
         | 
| 134 | 
            -
            {"model": "monilouise/opt125M_portuguese", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
         | 
| 135 | 
            -
            {"model": "HeyLucasLeao/gpt-neo-small-portuguese", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
         | 
| 136 | 
             
            // other langs (es/Ko/Jp/nordic)
         | 
| 137 | 
            -
            {"model": "projecte-aina/FLOR-760M", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
         | 
| 138 | 
            -
            {"model": "projecte-aina/FLOR-1.3B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
         | 
| 139 | 
            -
            {"model": "projecte-aina/FLOR-6.3B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
         | 
| 140 | 
            -
            {"model": "projecte-aina/aguila-7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
         | 
| 141 | 
            -
            {"model": "EleutherAI/polyglot-ko-12.8b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 142 | 
            -
            {"model": "matsuo-lab/weblab-10b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 143 | 
            -
            {"model": "pfnet/plamo-13b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 144 | 
            -
            {"model": "AI-Sweden-Models/gpt-sw3-6.7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 145 | 
            -
            {"model": "AI-Sweden-Models/gpt-sw3-6.7b-v2", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 146 | 
            -
            {"model": "AI-Sweden-Models/gpt-sw3-20b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 147 | 
            -
            {"model": "AI-Sweden-Models/gpt-sw3-40b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 148 | 
            -
            {"model": "OpenLLM-France/Claire-Mistral-7B-0.1", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
         | 
| 149 | 
            -
            {"model": "OpenLLM-France/Claire-7B-0.1", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
         | 
| 150 | 
             
            // huge models:
         | 
| 151 | 
             
            //{"model": "bigscience/bloom", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 152 | 
             
            //{"model": "tiiuae/falcon-180B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 153 | 
             
            //{"model": "facebook/galactica-120b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 154 | 
             
            //random chat models
         | 
| 155 | 
            -
            {"model": "openchat/openchat-3.5-0106", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)"}
         | 
| 156 | 
             
            //other 2
         | 
| 157 | 
            -
            {"model": "stabilityai/stablelm-base-alpha-3b-v2", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 158 | 
            -
            {"model": "stabilityai/stablelm-base-alpha-7b-v2", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 159 | 
            -
            {"model": "stabilityai/stablelm-base-alpha-3b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 160 | 
            -
            {"model": "stabilityai/stablelm-base-alpha-7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 161 | 
            -
            {"model": "openai-community/openai-gpt", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 162 | 
            -
            {"model": "openai-community/gpt2-medium", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 163 | 
            -
            {"model": "openai-community/gpt2-large", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 164 | 
            -
            {"model": "openai-community/gpt2-xl", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 165 | 
            -
            {"model": "microsoft/phi-1", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 166 | 
            -
            {"model": "microsoft/phi-1_5", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 167 | 
            -
            {"model": "microsoft/phi-2", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 168 | 
            -
            {"model": "mosaicml/mpt-7b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 169 | 
            -
            {"model": "mosaicml/mpt-30b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 170 | 
            -
            {"model": "mosaicml/mpt-7b-8k", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 171 | 
            -
            {"model": "01-ai/Yi-6B-200K", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 172 | 
            -
            {"model": "01-ai/Yi-34B-200K", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 173 | 
            -
            {"model": "google/t5-v1_1-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 174 | 
            -
            {"model": "google/t5-v1_1-small", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 175 | 
            -
            {"model": "google/t5-v1_1-large", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 176 | 
            -
            {"model": "google/t5-v1_1-xl", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 177 | 
            -
            {"model": "google/t5-v1_1-xxl", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 178 | 
            -
            {"model": "google/mt5-xl", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 179 | 
            -
            {"model": "google/mt5-xxl", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 180 | 
            -
            {"model": "google/umt5-small", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 181 | 
            -
            {"model": "google/umt5-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 182 | 
            -
            {"model": "google/umt5-xl", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 183 | 
            -
            {"model": "google/umt5-xxl", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 184 | 
            -
            {"model": "AdaptLLM/law-LLM", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🔶 : fine-tuned"}
         | 
| 185 | 
            -
            {"model": "AdaptLLM/medicine-LLM", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🔶 : fine-tuned"}
         | 
| 186 | 
            -
            {"model": "AdaptLLM/finance-LLM", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🔶 : fine-tuned"}
         | 
| 187 | 
            -
            {"model": "AdaptLLM/law-LLM-13B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🔶 : fine-tuned"}
         | 
| 188 | 
            -
            {"model": "AdaptLLM/medicine-LLM-13B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🔶 : fine-tuned"}
         | 
| 189 | 
            -
            {"model": "AdaptLLM/finance-LLM-13B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🔶 : fine-tuned"}
         | 
| 190 | 
            -
            {"model": "cerebras/Cerebras-GPT-111M", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 191 | 
            -
            {"model": "cerebras/Cerebras-GPT-256M", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 192 | 
            -
            {"model": "cerebras/Cerebras-GPT-590M", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 193 | 
            -
            {"model": "cerebras/Cerebras-GPT-1.3B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 194 | 
            -
            {"model": "cerebras/Cerebras-GPT-2.7B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 195 | 
            -
            {"model": "cerebras/Cerebras-GPT-6.7B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 196 | 
            -
            {"model": "cerebras/Cerebras-GPT-13B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 197 | 
            -
            {"model": "cerebras/btlm-3b-8k-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 198 | 
            -
            {"model": "ai-forever/mGPT-13B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 199 | 
            -
            {"model": "ai-forever/mGPT", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 200 | 
            -
            {"model": "EleutherAI/pythia-70m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 201 | 
            -
            {"model": "EleutherAI/pythia-160m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 202 | 
            -
            {"model": "EleutherAI/pythia-410m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 203 | 
            -
            {"model": "EleutherAI/pythia-1b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 204 | 
            -
            {"model": "EleutherAI/pythia-2.8b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 205 | 
            -
            {"model": "EleutherAI/pythia-6.9b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 206 | 
            -
            {"model": "EleutherAI/pythia-12b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 207 | 
            -
            {"model": "facebook/galactica-125m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 208 | 
            -
            {"model": "facebook/galactica-1.3b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 209 | 
            -
            {"model": "facebook/galactica-6.7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 210 | 
            -
            {"model": "facebook/galactica-30b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 211 | 
            -
            {"model": "facebook/xglm-564M", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 212 | 
            -
            {"model": "facebook/xglm-1.7B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 213 | 
            -
            {"model": "facebook/xglm-2.9B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 214 | 
            -
            {"model": "facebook/xglm-4.5B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 215 | 
            -
            {"model": "facebook/xglm-7.5B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
|  | |
| 1 | 
             
            // 1- base models <=7B
         | 
| 2 | 
            +
            {"model": "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 3 | 
            +
            {"model": "meta-llama/Llama-2-7b-hf", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 4 | 
            +
            {"model": "mistralai/Mistral-7B-v0.1", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 5 | 
            +
            {"model": "huggyllama/llama-7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 6 | 
            +
            {"model": "openlm-research/open_llama_3b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 7 | 
            +
            {"model": "openlm-research/open_llama_3b_v2", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 8 | 
            +
            {"model": "openlm-research/open_llama_7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 9 | 
            +
            {"model": "openlm-research/open_llama_7b_v2", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 10 | 
             
            // 2 - Larger base models <= 13B
         | 
| 11 | 
            +
            {"model": "meta-llama/Llama-2-13b-hf", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 12 | 
            +
            {"model": "huggyllama/llama-13b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 13 | 
            +
            {"model": "openlm-research/open_llama_13b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 14 | 
            +
            {"model": "upstage/SOLAR-10.7B-v1.0", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 15 | 
             
            // 3 - portuguese models
         | 
| 16 | 
            +
            {"model": "maritaca-ai/sabia-7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Portuguese"}
         | 
| 17 | 
            +
            {"model": "dominguesm/canarim-7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Portuguese"}
         | 
| 18 | 
            +
            {"model": "22h/open-cabrita3b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Portuguese"}
         | 
| 19 | 
            +
            {"model": "recogna-nlp/bode-7b-alpaca-pt-br", "base_model": "meta-llama/Llama-2-7b-chat-hf", "revision": "main", "precision": "float16", "weight_type": "Adapter", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)", "main_language": "Portuguese"}
         | 
| 20 | 
            +
            {"model": "recogna-nlp/bode-13b-alpaca-pt-br", "base_model": "meta-llama/Llama-2-13b-chat-hf", "revision": "main", "precision": "float16", "weight_type": "Adapter", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)", "main_language": "Portuguese"}
         | 
| 21 | 
            +
            {"model": "22h/cabrita_7b_pt_850000", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Portuguese"}
         | 
| 22 | 
            +
            {"model": "22h/cabrita-lora-v0-1", "base_model": "huggyllama/llama-7b", "revision": "main", "precision": "float16", "weight_type": "Adapter", "model_type": "🔶 : fine-tuned", "main_language": "Portuguese"}
         | 
| 23 | 
            +
            {"model": "wandgibaut/periquito-3B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Portuguese"}
         | 
| 24 | 
            +
            {"model": "nicolasdec/Cabra", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)", "main_language": "Portuguese"}
         | 
| 25 | 
            +
            {"model": "nicolasdec/cabra13b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)", "main_language": "Portuguese"}
         | 
| 26 | 
            +
            {"model": "lrds-code/samba-1.1B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)", "main_language": "Portuguese"}
         | 
| 27 | 
            +
            {"model": "lrds-code/boana-7b-instruct", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)", "main_language": "Portuguese"}
         | 
| 28 | 
            +
            {"model": "nicholasKluge/Aira-2-portuguese-124M", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)", "main_language": "Portuguese"}
         | 
| 29 | 
            +
            {"model": "nicholasKluge/Aira-2-portuguese-560M", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)", "main_language": "Portuguese"}
         | 
| 30 | 
            +
            {"model": "nicholasKluge/Aira-2-portuguese-1B7", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)", "main_language": "Portuguese"}
         | 
| 31 | 
             
            // other must-have <=7B
         | 
| 32 | 
            +
            {"model": "dynamofl/dynamo-8B-v0.1", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "English"}
         | 
| 33 | 
            +
            {"model": "01-ai/Yi-6B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 34 | 
            +
            {"model": "Unbabel/TowerBase-7B-v0.1", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "English"}
         | 
| 35 | 
            +
            {"model": "tiiuae/falcon-7b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 36 | 
            +
            {"model": "bigscience/bloom-560m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 37 | 
            +
            {"model": "bigscience/bloom-1b7", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 38 | 
            +
            {"model": "bigscience/bloom-3b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 39 | 
            +
            {"model": "bigscience/bloom-7b1", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 40 | 
            +
            {"model": "stabilityai/stablelm-2-1_6b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 41 | 
            +
            {"model": "stabilityai/stablelm-3b-4e1t", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 42 | 
             
            // Larger base models >13B
         | 
| 43 | 
            +
            {"model": "mistralai/Mixtral-8x7B-v0.1", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 44 | 
            +
            {"model": "huggyllama/llama-30b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 45 | 
            +
            {"model": "01-ai/Yi-34B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 46 | 
            +
            {"model": "meta-llama/Llama-2-70b-hf", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 47 | 
            +
            {"model": "huggyllama/llama-65b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 48 | 
             
            // minors must
         | 
| 49 | 
            +
            {"model": "togethercomputer/RedPajama-INCITE-Base-3B-v1", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 50 | 
            +
            {"model": "togethercomputer/RedPajama-INCITE-7B-Base", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 51 | 
            +
            {"model": "DAMO-NLP-MT/polylm-1.7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 52 | 
            +
            {"model": "DAMO-NLP-MT/polylm-13b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 53 | 
            +
            {"model": "Deci/DeciLM-6b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🔶 : fine-tuned", "main_language": "English"}
         | 
| 54 | 
            +
            {"model": "Deci/DeciLM-7B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🔶 : fine-tuned", "main_language": "English"}
         | 
| 55 | 
             
            // multiple (ch-jp)/en bi/multi lingual models
         | 
| 56 | 
            +
            {"model": "internlm/internlm2-7b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🔶 : fine-tuned", "main_language": "?"}
         | 
| 57 | 
            +
            {"model": "internlm/internlm2-base-7b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
         | 
| 58 | 
            +
            {"model": "internlm/internlm-7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
         | 
| 59 | 
            +
            {"model": "internlm/internlm2-20b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🔶 : fine-tuned", "main_language": "?"}
         | 
| 60 | 
            +
            {"model": "internlm/internlm2-base-20b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
         | 
| 61 | 
            +
            {"model": "internlm/internlm-20b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
         | 
| 62 | 
            +
            {"model": "Qwen/Qwen-1_8B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "Chinese"}
         | 
| 63 | 
            +
            {"model": "Qwen/Qwen-7B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "Chinese"}
         | 
| 64 | 
            +
            {"model": "Qwen/Qwen-14B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "Chinese"}
         | 
| 65 | 
            +
            {"model": "xverse/XVERSE-7B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
         | 
| 66 | 
            +
            {"model": "xverse/XVERSE-13B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
         | 
| 67 | 
            +
            {"model": "xverse/XVERSE-13B-256K", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
         | 
| 68 | 
            +
            {"model": "Skywork/Skywork-13B-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
         | 
| 69 | 
            +
            {"model": "baichuan-inc/Baichuan-7B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "Chinese"}
         | 
| 70 | 
            +
            {"model": "baichuan-inc/Baichuan-13B-Base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
         | 
| 71 | 
            +
            {"model": "baichuan-inc/Baichuan2-7B-Base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "Chinese"}
         | 
| 72 | 
            +
            {"model": "baichuan-inc/Baichuan2-13B-Base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "Chinese"}
         | 
| 73 | 
            +
            {"model": "OrionStarAI/Orion-14B-Base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "Chinese"}
         | 
| 74 | 
            +
            {"model": "deepseek-ai/deepseek-llm-7b-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
         | 
| 75 | 
            +
            {"model": "deepseek-ai/deepseek-moe-16b-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
         | 
| 76 | 
            +
            {"model": "BAAI/Aquila-7B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
         | 
| 77 | 
            +
            {"model": "BAAI/Aquila2-7B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
         | 
| 78 | 
            +
            {"model": "THUDM/chatglm3-6b-base", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "Chinese"}
         | 
| 79 | 
            +
            {"model": "THUDM/glm-2b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 80 | 
            +
            {"model": "THUDM/glm-10b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 81 | 
            +
            {"model": "fnlp/moss-moon-003-base", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
         | 
| 82 | 
            +
            {"model": "fnlp/moss-base-7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
         | 
| 83 | 
             
            // multiple chinese/jp large
         | 
| 84 | 
            +
            {"model": "Qwen/Qwen-72B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "Chinese"}
         | 
| 85 | 
            +
            {"model": "xverse/XVERSE-65B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
         | 
| 86 | 
            +
            {"model": "xverse/XVERSE-65B-2", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
         | 
| 87 | 
            +
            {"model": "deepseek-ai/deepseek-llm-67b-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
         | 
| 88 | 
            +
            {"model": "BAAI/Aquila2-34B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
         | 
| 89 | 
            +
            {"model": "BAAI/Aquila2-70B-Expr", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
         | 
| 90 | 
             
            // minors must 2
         | 
| 91 | 
            +
            {"model": "gpt2", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 92 | 
            +
            {"model": "t5-small", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 93 | 
            +
            {"model": "t5-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 94 | 
            +
            {"model": "t5-large", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 95 | 
            +
            {"model": "google/mt5-small", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 96 | 
            +
            {"model": "google/mt5-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 97 | 
            +
            {"model": "google/mt5-large", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 98 | 
             
            //others
         | 
| 99 | 
            +
            {"model": "NucleusAI/nucleus-22B-token-500B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 100 | 
            +
            {"model": "EleutherAI/pythia-14m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 101 | 
            +
            {"model": "EleutherAI/pythia-70m-deduped", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 102 | 
            +
            {"model": "EleutherAI/pythia-160m-deduped", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 103 | 
            +
            {"model": "EleutherAI/pythia-410m-deduped", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 104 | 
            +
            {"model": "EleutherAI/pythia-1b-deduped", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 105 | 
            +
            {"model": "EleutherAI/pythia-2.8b-deduped", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 106 | 
            +
            {"model": "EleutherAI/pythia-6.9b-deduped", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 107 | 
            +
            {"model": "EleutherAI/pythia-12b-deduped", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 108 | 
            +
            {"model": "EleutherAI/gpt-neo-125m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 109 | 
            +
            {"model": "EleutherAI/gpt-neo-1.3B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 110 | 
            +
            {"model": "EleutherAI/gpt-neo-2.7B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 111 | 
            +
            {"model": "EleutherAI/gpt-j-6b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 112 | 
            +
            {"model": "EleutherAI/gpt-neox-20b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 113 | 
            +
            {"model": "facebook/opt-125m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 114 | 
            +
            {"model": "facebook/opt-350m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 115 | 
            +
            {"model": "facebook/opt-1.3b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 116 | 
            +
            {"model": "facebook/opt-2.7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 117 | 
            +
            {"model": "facebook/opt-6.7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 118 | 
            +
            {"model": "facebook/opt-13b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 119 | 
            +
            {"model": "facebook/opt-30b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 120 | 
             
            //other large
         | 
| 121 | 
            +
            {"model": "facebook/opt-66b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 122 | 
            +
            {"model": "tiiuae/falcon-40b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 123 | 
             
            // minors portuguese
         | 
| 124 | 
            +
            {"model": "pierreguillou/gpt2-small-portuguese", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Portuguese"}
         | 
| 125 | 
            +
            {"model": "pucpr/gpt2-bio-pt", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Portuguese"}
         | 
| 126 | 
            +
            {"model": "unicamp-dl/ptt5-small-portuguese-vocab", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Portuguese"}
         | 
| 127 | 
            +
            {"model": "unicamp-dl/ptt5-base-portuguese-vocab", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Portuguese"}
         | 
| 128 | 
            +
            {"model": "unicamp-dl/ptt5-large-portuguese-vocab", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Portuguese"}
         | 
| 129 | 
            +
            {"model": "unicamp-dl/ptt5-small-t5-vocab", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Portuguese"}
         | 
| 130 | 
            +
            {"model": "unicamp-dl/ptt5-base-t5-vocab", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Portuguese"}
         | 
| 131 | 
            +
            {"model": "unicamp-dl/ptt5-large-t5-vocab", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Portuguese"}
         | 
| 132 | 
            +
            {"model": "josu/gpt-neo-pt-br", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Portuguese"}
         | 
| 133 | 
            +
            {"model": "josu/gpt-neo-pt-1.3B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Portuguese"}
         | 
| 134 | 
            +
            {"model": "monilouise/opt125M_portuguese", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Portuguese"}
         | 
| 135 | 
            +
            {"model": "HeyLucasLeao/gpt-neo-small-portuguese", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Portuguese"}
         | 
| 136 | 
             
            // other langs (es/Ko/Jp/nordic)
         | 
| 137 | 
            +
            {"model": "projecte-aina/FLOR-760M", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Spanish"}
         | 
| 138 | 
            +
            {"model": "projecte-aina/FLOR-1.3B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Spanish"}
         | 
| 139 | 
            +
            {"model": "projecte-aina/FLOR-6.3B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Spanish"}
         | 
| 140 | 
            +
            {"model": "projecte-aina/aguila-7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Spanish"}
         | 
| 141 | 
            +
            {"model": "EleutherAI/polyglot-ko-12.8b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "Other"}
         | 
| 142 | 
            +
            {"model": "matsuo-lab/weblab-10b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "Other"}
         | 
| 143 | 
            +
            {"model": "pfnet/plamo-13b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 144 | 
            +
            {"model": "AI-Sweden-Models/gpt-sw3-6.7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 145 | 
            +
            {"model": "AI-Sweden-Models/gpt-sw3-6.7b-v2", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 146 | 
            +
            {"model": "AI-Sweden-Models/gpt-sw3-20b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 147 | 
            +
            {"model": "AI-Sweden-Models/gpt-sw3-40b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 148 | 
            +
            {"model": "OpenLLM-France/Claire-Mistral-7B-0.1", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Other"}
         | 
| 149 | 
            +
            {"model": "OpenLLM-France/Claire-7B-0.1", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Other"}
         | 
| 150 | 
             
            // huge models:
         | 
| 151 | 
             
            //{"model": "bigscience/bloom", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 152 | 
             
            //{"model": "tiiuae/falcon-180B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 153 | 
             
            //{"model": "facebook/galactica-120b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
         | 
| 154 | 
             
            //random chat models
         | 
| 155 | 
            +
            {"model": "openchat/openchat-3.5-0106", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)", "main_language": "English"}
         | 
| 156 | 
             
            //other 2
         | 
| 157 | 
            +
            {"model": "stabilityai/stablelm-base-alpha-3b-v2", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 158 | 
            +
            {"model": "stabilityai/stablelm-base-alpha-7b-v2", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 159 | 
            +
            {"model": "stabilityai/stablelm-base-alpha-3b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 160 | 
            +
            {"model": "stabilityai/stablelm-base-alpha-7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 161 | 
            +
            {"model": "openai-community/openai-gpt", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 162 | 
            +
            {"model": "openai-community/gpt2-medium", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 163 | 
            +
            {"model": "openai-community/gpt2-large", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 164 | 
            +
            {"model": "openai-community/gpt2-xl", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 165 | 
            +
            {"model": "microsoft/phi-1", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 166 | 
            +
            {"model": "microsoft/phi-1_5", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 167 | 
            +
            {"model": "microsoft/phi-2", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 168 | 
            +
            {"model": "mosaicml/mpt-7b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 169 | 
            +
            {"model": "mosaicml/mpt-30b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 170 | 
            +
            {"model": "mosaicml/mpt-7b-8k", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 171 | 
            +
            {"model": "01-ai/Yi-6B-200K", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 172 | 
            +
            {"model": "01-ai/Yi-34B-200K", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 173 | 
            +
            {"model": "google/t5-v1_1-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 174 | 
            +
            {"model": "google/t5-v1_1-small", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 175 | 
            +
            {"model": "google/t5-v1_1-large", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 176 | 
            +
            {"model": "google/t5-v1_1-xl", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 177 | 
            +
            {"model": "google/t5-v1_1-xxl", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 178 | 
            +
            {"model": "google/mt5-xl", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 179 | 
            +
            {"model": "google/mt5-xxl", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 180 | 
            +
            {"model": "google/umt5-small", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 181 | 
            +
            {"model": "google/umt5-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 182 | 
            +
            {"model": "google/umt5-xl", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 183 | 
            +
            {"model": "google/umt5-xxl", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 184 | 
            +
            {"model": "AdaptLLM/law-LLM", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🔶 : fine-tuned", "main_language": "English"}
         | 
| 185 | 
            +
            {"model": "AdaptLLM/medicine-LLM", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🔶 : fine-tuned", "main_language": "English"}
         | 
| 186 | 
            +
            {"model": "AdaptLLM/finance-LLM", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🔶 : fine-tuned", "main_language": "English"}
         | 
| 187 | 
            +
            {"model": "AdaptLLM/law-LLM-13B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🔶 : fine-tuned", "main_language": "English"}
         | 
| 188 | 
            +
            {"model": "AdaptLLM/medicine-LLM-13B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🔶 : fine-tuned", "main_language": "English"}
         | 
| 189 | 
            +
            {"model": "AdaptLLM/finance-LLM-13B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🔶 : fine-tuned", "main_language": "English"}
         | 
| 190 | 
            +
            {"model": "cerebras/Cerebras-GPT-111M", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 191 | 
            +
            {"model": "cerebras/Cerebras-GPT-256M", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 192 | 
            +
            {"model": "cerebras/Cerebras-GPT-590M", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 193 | 
            +
            {"model": "cerebras/Cerebras-GPT-1.3B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 194 | 
            +
            {"model": "cerebras/Cerebras-GPT-2.7B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 195 | 
            +
            {"model": "cerebras/Cerebras-GPT-6.7B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 196 | 
            +
            {"model": "cerebras/Cerebras-GPT-13B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 197 | 
            +
            {"model": "cerebras/btlm-3b-8k-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 198 | 
            +
            {"model": "ai-forever/mGPT-13B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 199 | 
            +
            {"model": "ai-forever/mGPT", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 200 | 
            +
            {"model": "EleutherAI/pythia-70m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 201 | 
            +
            {"model": "EleutherAI/pythia-160m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 202 | 
            +
            {"model": "EleutherAI/pythia-410m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 203 | 
            +
            {"model": "EleutherAI/pythia-1b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 204 | 
            +
            {"model": "EleutherAI/pythia-2.8b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 205 | 
            +
            {"model": "EleutherAI/pythia-6.9b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 206 | 
            +
            {"model": "EleutherAI/pythia-12b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 207 | 
            +
            {"model": "facebook/galactica-125m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 208 | 
            +
            {"model": "facebook/galactica-1.3b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 209 | 
            +
            {"model": "facebook/galactica-6.7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 210 | 
            +
            {"model": "facebook/galactica-30b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 211 | 
            +
            {"model": "facebook/xglm-564M", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 212 | 
            +
            {"model": "facebook/xglm-1.7B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 213 | 
            +
            {"model": "facebook/xglm-2.9B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 214 | 
            +
            {"model": "facebook/xglm-4.5B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
| 215 | 
            +
            {"model": "facebook/xglm-7.5B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
         | 
    	
        src/display/utils.py
    CHANGED
    
    | @@ -66,6 +66,7 @@ auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("Model Name" | |
| 66 | 
             
            if GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS:
         | 
| 67 | 
             
                auto_eval_column_dict.append(["original_benchmark_average", ColumnContent, ColumnContent("🤗 Leaderboard Average", "number", False)])
         | 
| 68 | 
             
            auto_eval_column_dict.append(["npm", ColumnContent, ColumnContent("NPM (Average) ⬆️", "number", False)])
         | 
|  | |
| 69 |  | 
| 70 | 
             
            # We use make dataclass to dynamically fill the scores from Tasks
         | 
| 71 | 
             
            AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
         | 
| @@ -103,7 +104,8 @@ baseline_row = { | |
| 103 | 
             
                AutoEvalColumn.license.name: "",
         | 
| 104 | 
             
                AutoEvalColumn.still_on_hub.name: False,
         | 
| 105 | 
             
                AutoEvalColumn.moe.name: False,
         | 
| 106 | 
            -
                AutoEvalColumn.eval_time.name: 0.0
         | 
|  | |
| 107 | 
             
            }
         | 
| 108 |  | 
| 109 | 
             
            baseline_list = []
         | 
| @@ -152,6 +154,7 @@ human_baseline_row = { | |
| 152 | 
             
                AutoEvalColumn.still_on_hub.name: False,
         | 
| 153 | 
             
                AutoEvalColumn.moe.name: False,
         | 
| 154 | 
             
                AutoEvalColumn.eval_time.name: 0.0,
         | 
|  | |
| 155 | 
             
            }
         | 
| 156 |  | 
| 157 | 
             
            baseline_list = []
         | 
| @@ -225,7 +228,27 @@ class Precision(Enum): | |
| 225 | 
             
                        return Precision.qt_GPTQ
         | 
| 226 | 
             
                    return Precision.Unknown
         | 
| 227 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 228 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 229 |  | 
| 230 |  | 
| 231 | 
             
            # Column selection
         | 
|  | |
| 66 | 
             
            if GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS:
         | 
| 67 | 
             
                auto_eval_column_dict.append(["original_benchmark_average", ColumnContent, ColumnContent("🤗 Leaderboard Average", "number", False)])
         | 
| 68 | 
             
            auto_eval_column_dict.append(["npm", ColumnContent, ColumnContent("NPM (Average) ⬆️", "number", False)])
         | 
| 69 | 
            +
            auto_eval_column_dict.append(["main_language", ColumnContent, ColumnContent("Main Language", "str", False)])
         | 
| 70 |  | 
| 71 | 
             
            # We use make dataclass to dynamically fill the scores from Tasks
         | 
| 72 | 
             
            AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
         | 
|  | |
| 104 | 
             
                AutoEvalColumn.license.name: "",
         | 
| 105 | 
             
                AutoEvalColumn.still_on_hub.name: False,
         | 
| 106 | 
             
                AutoEvalColumn.moe.name: False,
         | 
| 107 | 
            +
                AutoEvalColumn.eval_time.name: 0.0,
         | 
| 108 | 
            +
                AutoEvalColumn.main_language.name: "?"
         | 
| 109 | 
             
            }
         | 
| 110 |  | 
| 111 | 
             
            baseline_list = []
         | 
|  | |
| 154 | 
             
                AutoEvalColumn.still_on_hub.name: False,
         | 
| 155 | 
             
                AutoEvalColumn.moe.name: False,
         | 
| 156 | 
             
                AutoEvalColumn.eval_time.name: 0.0,
         | 
| 157 | 
            +
                AutoEvalColumn.main_language.name: "?",
         | 
| 158 | 
             
            }
         | 
| 159 |  | 
| 160 | 
             
            baseline_list = []
         | 
|  | |
| 228 | 
             
                        return Precision.qt_GPTQ
         | 
| 229 | 
             
                    return Precision.Unknown
         | 
| 230 |  | 
| 231 | 
            +
            class Language(Enum):
         | 
| 232 | 
            +
                English = ModelDetails("English")
         | 
| 233 | 
            +
                Portuguese = ModelDetails("Portuguese")
         | 
| 234 | 
            +
                Spanish = ModelDetails("Spanish")
         | 
| 235 | 
            +
                Chinese = ModelDetails("Chinese")
         | 
| 236 | 
            +
                Other = ModelDetails("Other")
         | 
| 237 | 
            +
                Unknown = ModelDetails("?")
         | 
| 238 |  | 
| 239 | 
            +
                def from_str(language):
         | 
| 240 | 
            +
                    language = language.lower().replace('-', '').replace('_', '')
         | 
| 241 | 
            +
                    if language in ["pt", "ptpt", "ptbr", "portuguese"]:
         | 
| 242 | 
            +
                        return Language.Portuguese
         | 
| 243 | 
            +
                    if language in ["en", "enus", "engb", "english", ]:
         | 
| 244 | 
            +
                        return Language.English
         | 
| 245 | 
            +
                    if language in ["es", "spanish"]:
         | 
| 246 | 
            +
                        return Language.Spanish
         | 
| 247 | 
            +
                    if language in ["zh", "chinese"]:
         | 
| 248 | 
            +
                        return Language.Chinese
         | 
| 249 | 
            +
                    if language in ["other", "multi", "multilingual"]:
         | 
| 250 | 
            +
                        return Language.Other
         | 
| 251 | 
            +
                    return Language.Unknown
         | 
| 252 |  | 
| 253 |  | 
| 254 | 
             
            # Column selection
         | 
    	
        src/leaderboard/read_evals.py
    CHANGED
    
    | @@ -4,6 +4,7 @@ import math | |
| 4 | 
             
            import os
         | 
| 5 | 
             
            from dataclasses import dataclass
         | 
| 6 | 
             
            from typing import List
         | 
|  | |
| 7 |  | 
| 8 | 
             
            import dateutil
         | 
| 9 | 
             
            import numpy as np
         | 
| @@ -11,7 +12,7 @@ import numpy as np | |
| 11 | 
             
            from huggingface_hub import ModelCard
         | 
| 12 |  | 
| 13 | 
             
            from src.display.formatting import make_clickable_model
         | 
| 14 | 
            -
            from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType, ORIGINAL_TASKS
         | 
| 15 | 
             
            from src.envs import GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS, SHOW_INCOMPLETE_EVALS
         | 
| 16 |  | 
| 17 | 
             
            @dataclass
         | 
| @@ -26,6 +27,7 @@ class EvalResult: | |
| 26 | 
             
                precision: Precision = Precision.Unknown
         | 
| 27 | 
             
                model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
         | 
| 28 | 
             
                weight_type: WeightType = WeightType.Original # Original or Adapter
         | 
|  | |
| 29 | 
             
                architecture: str = "Unknown" # From config file
         | 
| 30 | 
             
                license: str = "?"
         | 
| 31 | 
             
                likes: int = 0
         | 
| @@ -137,6 +139,7 @@ class EvalResult: | |
| 137 | 
             
                        self.architecture = request.get("architectures", "Unknown")
         | 
| 138 | 
             
                        self.status = request.get("status", "FAILED")
         | 
| 139 | 
             
                        self.hidden = request.get("hidden", False)
         | 
|  | |
| 140 | 
             
                    except Exception as e:
         | 
| 141 | 
             
                        self.status = "FAILED"
         | 
| 142 | 
             
                        print(f"Could not find request file for {self.org}/{self.model}")
         | 
| @@ -188,7 +191,8 @@ class EvalResult: | |
| 188 | 
             
                        AutoEvalColumn.moe.name: ("moe" in self.tags if self.tags else False) or "moe" in self.full_model.lower(),
         | 
| 189 | 
             
                        AutoEvalColumn.flagged.name: self.flagged,
         | 
| 190 | 
             
                        AutoEvalColumn.eval_time.name: self.eval_time,
         | 
| 191 | 
            -
                        AutoEvalColumn.npm.name: npm
         | 
|  | |
| 192 | 
             
                    }
         | 
| 193 |  | 
| 194 | 
             
                    for task in Tasks:
         | 
|  | |
| 4 | 
             
            import os
         | 
| 5 | 
             
            from dataclasses import dataclass
         | 
| 6 | 
             
            from typing import List
         | 
| 7 | 
            +
            import traceback
         | 
| 8 |  | 
| 9 | 
             
            import dateutil
         | 
| 10 | 
             
            import numpy as np
         | 
|  | |
| 12 | 
             
            from huggingface_hub import ModelCard
         | 
| 13 |  | 
| 14 | 
             
            from src.display.formatting import make_clickable_model
         | 
| 15 | 
            +
            from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, Language, WeightType, ORIGINAL_TASKS
         | 
| 16 | 
             
            from src.envs import GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS, SHOW_INCOMPLETE_EVALS
         | 
| 17 |  | 
| 18 | 
             
            @dataclass
         | 
|  | |
| 27 | 
             
                precision: Precision = Precision.Unknown
         | 
| 28 | 
             
                model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
         | 
| 29 | 
             
                weight_type: WeightType = WeightType.Original # Original or Adapter
         | 
| 30 | 
            +
                main_language: Language = Language.Unknown
         | 
| 31 | 
             
                architecture: str = "Unknown" # From config file
         | 
| 32 | 
             
                license: str = "?"
         | 
| 33 | 
             
                likes: int = 0
         | 
|  | |
| 139 | 
             
                        self.architecture = request.get("architectures", "Unknown")
         | 
| 140 | 
             
                        self.status = request.get("status", "FAILED")
         | 
| 141 | 
             
                        self.hidden = request.get("hidden", False)
         | 
| 142 | 
            +
                        self.main_language = request.get("main_language", "?")
         | 
| 143 | 
             
                    except Exception as e:
         | 
| 144 | 
             
                        self.status = "FAILED"
         | 
| 145 | 
             
                        print(f"Could not find request file for {self.org}/{self.model}")
         | 
|  | |
| 191 | 
             
                        AutoEvalColumn.moe.name: ("moe" in self.tags if self.tags else False) or "moe" in self.full_model.lower(),
         | 
| 192 | 
             
                        AutoEvalColumn.flagged.name: self.flagged,
         | 
| 193 | 
             
                        AutoEvalColumn.eval_time.name: self.eval_time,
         | 
| 194 | 
            +
                        AutoEvalColumn.npm.name: npm,
         | 
| 195 | 
            +
                        AutoEvalColumn.main_language.name: self.main_language
         | 
| 196 | 
             
                    }
         | 
| 197 |  | 
| 198 | 
             
                    for task in Tasks:
         | 
    	
        src/submission/submit.py
    CHANGED
    
    | @@ -27,7 +27,8 @@ def add_new_eval( | |
| 27 | 
             
                private: bool,
         | 
| 28 | 
             
                weight_type: str,
         | 
| 29 | 
             
                model_type: str,
         | 
| 30 | 
            -
                 | 
|  | |
| 31 | 
             
            ):
         | 
| 32 | 
             
                global REQUESTED_MODELS
         | 
| 33 | 
             
                global USERS_TO_SUBMISSION_DATES
         | 
| @@ -119,6 +120,7 @@ def add_new_eval( | |
| 119 | 
             
                    "params": model_size,
         | 
| 120 | 
             
                    "architectures": architecture,
         | 
| 121 | 
             
                    "weight_type": weight_type,
         | 
|  | |
| 122 | 
             
                    "status": "PENDING",
         | 
| 123 | 
             
                    "submitted_time": current_time,
         | 
| 124 | 
             
                    "model_type": model_type,
         | 
|  | |
| 27 | 
             
                private: bool,
         | 
| 28 | 
             
                weight_type: str,
         | 
| 29 | 
             
                model_type: str,
         | 
| 30 | 
            +
                main_language: str,
         | 
| 31 | 
            +
                source="leaderboard",
         | 
| 32 | 
             
            ):
         | 
| 33 | 
             
                global REQUESTED_MODELS
         | 
| 34 | 
             
                global USERS_TO_SUBMISSION_DATES
         | 
|  | |
| 120 | 
             
                    "params": model_size,
         | 
| 121 | 
             
                    "architectures": architecture,
         | 
| 122 | 
             
                    "weight_type": weight_type,
         | 
| 123 | 
            +
                    "main_language": main_language,
         | 
| 124 | 
             
                    "status": "PENDING",
         | 
| 125 | 
             
                    "submitted_time": current_time,
         | 
| 126 | 
             
                    "model_type": model_type,
         | 
 
			
