Spaces:
Running
Running
Update test3.html
Browse files- test3.html +96 -65
test3.html
CHANGED
|
@@ -3,90 +3,121 @@
|
|
| 3 |
<head>
|
| 4 |
<meta charset="UTF-8">
|
| 5 |
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 6 |
-
<title>Modelo de
|
| 7 |
-
|
| 8 |
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs"></script>
|
| 9 |
<script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/bert"></script>
|
| 10 |
-
|
| 11 |
-
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
</head>
|
| 13 |
<body>
|
| 14 |
-
<h1>Modelo de Preguntas y Respuestas sobre un PDF</h1>
|
| 15 |
-
|
| 16 |
-
<input type="file" id="pdfInput" />
|
| 17 |
-
<button onclick="procesarPDF()">Cargar PDF</button>
|
| 18 |
|
| 19 |
-
<
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
<script>
|
| 27 |
-
|
| 28 |
-
let
|
| 29 |
-
|
| 30 |
-
//
|
| 31 |
-
async function
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
}
|
|
|
|
| 38 |
}
|
| 39 |
|
| 40 |
-
//
|
| 41 |
-
async function
|
| 42 |
-
const
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
| 59 |
}
|
| 60 |
|
| 61 |
-
//
|
| 62 |
-
async function
|
| 63 |
-
const
|
| 64 |
-
if (!
|
| 65 |
-
|
| 66 |
return;
|
| 67 |
}
|
| 68 |
|
| 69 |
-
//
|
| 70 |
-
const
|
|
|
|
| 71 |
|
| 72 |
-
//
|
| 73 |
-
document.getElementById(
|
| 74 |
}
|
| 75 |
|
| 76 |
-
//
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
// Devolver la respuesta
|
| 88 |
-
return respuesta;
|
| 89 |
-
}
|
| 90 |
</script>
|
|
|
|
| 91 |
</body>
|
| 92 |
</html>
|
|
|
|
|
|
| 3 |
<head>
|
| 4 |
<meta charset="UTF-8">
|
| 5 |
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 6 |
+
<title>Modelo de BERT con TensorFlow.js</title>
|
|
|
|
| 7 |
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs"></script>
|
| 8 |
<script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/bert"></script>
|
| 9 |
+
<script src="https://cdnjs.cloudflare.com/ajax/libs/pdf.js/2.10.377/pdf.min.js"></script>
|
| 10 |
+
<style>
|
| 11 |
+
body {
|
| 12 |
+
font-family: Arial, sans-serif;
|
| 13 |
+
}
|
| 14 |
+
.container {
|
| 15 |
+
margin: 20px;
|
| 16 |
+
}
|
| 17 |
+
.file-input {
|
| 18 |
+
margin: 10px 0;
|
| 19 |
+
}
|
| 20 |
+
.query-input {
|
| 21 |
+
margin: 10px 0;
|
| 22 |
+
}
|
| 23 |
+
.response {
|
| 24 |
+
margin-top: 20px;
|
| 25 |
+
font-size: 1.2em;
|
| 26 |
+
}
|
| 27 |
+
</style>
|
| 28 |
</head>
|
| 29 |
<body>
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
<div class="container">
|
| 32 |
+
<h1>Modelo de BERT con TensorFlow.js</h1>
|
| 33 |
+
|
| 34 |
+
<!-- Subir archivo PDF -->
|
| 35 |
+
<input type="file" id="pdf-file" class="file-input" accept=".pdf" />
|
| 36 |
|
| 37 |
+
<!-- Entrada para consulta -->
|
| 38 |
+
<input type="text" id="query" class="query-input" placeholder="Escribe tu consulta..." />
|
| 39 |
+
|
| 40 |
+
<button onclick="handleQuery()">Consultar modelo</button>
|
| 41 |
+
|
| 42 |
+
<div class="response" id="response"></div>
|
| 43 |
+
</div>
|
| 44 |
|
| 45 |
<script>
|
| 46 |
+
let model;
|
| 47 |
+
let trainingData = [];
|
| 48 |
+
|
| 49 |
+
// Funci贸n para cargar el modelo DistilBERT
|
| 50 |
+
async function loadModel() {
|
| 51 |
+
model = await tf.loadLayersModel('https://cdn.jsdelivr.net/npm/@tensorflow-models/bert/dist/bert_model.json');
|
| 52 |
+
console.log("Modelo cargado");
|
| 53 |
+
}
|
| 54 |
+
|
| 55 |
+
// Funci贸n para procesar PDF y extraer texto
|
| 56 |
+
async function extractTextFromPDF(file) {
|
| 57 |
+
const pdf = await pdfjsLib.getDocument(URL.createObjectURL(file)).promise;
|
| 58 |
+
let textContent = '';
|
| 59 |
+
for (let pageNum = 1; pageNum <= pdf.numPages; pageNum++) {
|
| 60 |
+
const page = await pdf.getPage(pageNum);
|
| 61 |
+
const content = await page.getTextContent();
|
| 62 |
+
content.items.forEach(item => {
|
| 63 |
+
textContent += item.str + ' ';
|
| 64 |
+
});
|
| 65 |
}
|
| 66 |
+
return textContent;
|
| 67 |
}
|
| 68 |
|
| 69 |
+
// Funci贸n para agregar el texto de los PDFs y entrenar el modelo
|
| 70 |
+
async function trainModel(file) {
|
| 71 |
+
const text = await extractTextFromPDF(file);
|
| 72 |
+
trainingData.push(text);
|
| 73 |
+
|
| 74 |
+
// Preprocesar el texto para BERT (esto es un ejemplo b谩sico)
|
| 75 |
+
const inputText = text.split(' ').slice(0, 512).join(' '); // Limitar el tama帽o del texto
|
| 76 |
+
|
| 77 |
+
// Predecir con DistilBERT (aqu铆 solo mostramos un ejemplo b谩sico)
|
| 78 |
+
const tokenizedInput = tokenizeInput(inputText);
|
| 79 |
+
const prediction = await model.predict(tokenizedInput);
|
| 80 |
+
|
| 81 |
+
console.log(prediction); // Aqu铆 deber铆as implementar m谩s l贸gica para entrenar el modelo
|
| 82 |
+
}
|
| 83 |
+
|
| 84 |
+
// Tokenizar el texto de entrada
|
| 85 |
+
function tokenizeInput(inputText) {
|
| 86 |
+
// Aseg煤rate de usar una correcta tokenizaci贸n basada en BERT
|
| 87 |
+
// Este es un ejemplo b谩sico, puede requerir una implementaci贸n completa seg煤n TensorFlow.js y BERT
|
| 88 |
+
const tokens = inputText.split(' ');
|
| 89 |
+
const inputTensor = tf.tensor([tokens.map(token => token.charCodeAt(0))]); // Tokenizaci贸n b谩sica
|
| 90 |
+
return inputTensor;
|
| 91 |
}
|
| 92 |
|
| 93 |
+
// Manejar la consulta del modelo
|
| 94 |
+
async function handleQuery() {
|
| 95 |
+
const query = document.getElementById('query').value;
|
| 96 |
+
if (!query) {
|
| 97 |
+
document.getElementById('response').innerText = "Por favor, escribe una consulta.";
|
| 98 |
return;
|
| 99 |
}
|
| 100 |
|
| 101 |
+
// Tokenizar y hacer una predicci贸n con el modelo
|
| 102 |
+
const tokenizedQuery = tokenizeInput(query);
|
| 103 |
+
const queryPrediction = await model.predict(tokenizedQuery);
|
| 104 |
|
| 105 |
+
// Aqu铆 deber铆as implementar la l贸gica para dar una respuesta basada en la predicci贸n
|
| 106 |
+
document.getElementById('response').innerText = `Respuesta del modelo: ${queryPrediction}`;
|
| 107 |
}
|
| 108 |
|
| 109 |
+
// Escuchar el archivo PDF y entrenar el modelo
|
| 110 |
+
document.getElementById('pdf-file').addEventListener('change', function(event) {
|
| 111 |
+
const file = event.target.files[0];
|
| 112 |
+
if (file) {
|
| 113 |
+
trainModel(file);
|
| 114 |
+
}
|
| 115 |
+
});
|
| 116 |
+
|
| 117 |
+
// Cargar el modelo cuando la p谩gina se carga
|
| 118 |
+
loadModel();
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
</script>
|
| 120 |
+
|
| 121 |
</body>
|
| 122 |
</html>
|
| 123 |
+
|