BookRecommendationSystem / dlrm_inference.py
edwinbh's picture
Upload dlrm_inference.py
e73cff5 verified
"""
DLRM Inference Engine for Book Recommendations
Loads trained DLRM model and provides recommendation functionality
"""
import torch
import numpy as np
import pandas as pd
import pickle
import mlflow
from mlflow import MlflowClient
import tempfile
import os
from typing import List, Dict, Tuple, Optional, Any
from functools import partial
import warnings
warnings.filterwarnings('ignore')
from torchrec import EmbeddingBagCollection
from torchrec.models.dlrm import DLRM, DLRMTrain
from torchrec.modules.embedding_configs import EmbeddingBagConfig
from torchrec.sparse.jagged_tensor import KeyedJaggedTensor
from torchrec.datasets.utils import Batch
class DLRMBookRecommender:
"""DLRM-based book recommender for inference"""
def __init__(self, model_path: str = None, run_id: str = None):
"""
Initialize DLRM book recommender
Args:
model_path: Path to saved model state dict
run_id: MLflow run ID to load model from
"""
self.device = torch.device("cpu")
self.model = None
self.preprocessing_info = None
# Load preprocessing info
self._load_preprocessing_info()
# Load model
if model_path and os.path.exists(model_path):
self._load_model_from_path(model_path)
elif run_id:
self._load_model_from_mlflow(run_id)
else:
print("⚠️ No model loaded. Please provide model_path or run_id")
def _load_preprocessing_info(self):
"""Load preprocessing information"""
if os.path.exists('book_dlrm_preprocessing.pkl'):
with open('book_dlrm_preprocessing.pkl', 'rb') as f:
self.preprocessing_info = pickle.load(f)
self.dense_cols = self.preprocessing_info['dense_cols']
self.cat_cols = self.preprocessing_info['cat_cols']
self.emb_counts = self.preprocessing_info['emb_counts']
self.user_encoder = self.preprocessing_info['user_encoder']
self.book_encoder = self.preprocessing_info['book_encoder']
self.publisher_encoder = self.preprocessing_info['publisher_encoder']
self.location_encoder = self.preprocessing_info['location_encoder']
self.scaler = self.preprocessing_info['scaler']
print("βœ… Preprocessing info loaded")
else:
raise FileNotFoundError("book_dlrm_preprocessing.pkl not found. Run preprocessing first.")
def _load_model_from_path(self, model_path: str):
"""Load model from saved state dict"""
try:
# Create model architecture
eb_configs = [
EmbeddingBagConfig(
name=f"t_{feature_name}",
embedding_dim=64, # Default embedding dim
num_embeddings=self.emb_counts[feature_idx],
feature_names=[feature_name],
)
for feature_idx, feature_name in enumerate(self.cat_cols)
]
dlrm_model = DLRM(
embedding_bag_collection=EmbeddingBagCollection(
tables=eb_configs, device=self.device
),
dense_in_features=len(self.dense_cols),
dense_arch_layer_sizes=[256, 128, 64],
over_arch_layer_sizes=[512, 256, 128, 1],
dense_device=self.device,
)
# Load state dict
state_dict = torch.load(model_path, map_location=self.device)
# Remove 'model.' prefix if present
if any(key.startswith('model.') for key in state_dict.keys()):
state_dict = {k[6:]: v for k, v in state_dict.items()}
dlrm_model.load_state_dict(state_dict)
self.model = dlrm_model
self.model.eval()
print(f"βœ… Model loaded from {model_path}")
except Exception as e:
print(f"❌ Error loading model: {e}")
def _load_model_from_mlflow(self, run_id: str):
"""Load model from MLflow"""
try:
client = MlflowClient()
run = client.get_run(run_id)
# Get model parameters from MLflow
params = run.data.params
cat_cols = eval(params.get('cat_cols'))
emb_counts = eval(params.get('emb_counts'))
dense_cols = eval(params.get('dense_cols'))
embedding_dim = int(params.get('embedding_dim', 64))
dense_arch_layer_sizes = eval(params.get('dense_arch_layer_sizes'))
over_arch_layer_sizes = eval(params.get('over_arch_layer_sizes'))
# Download model from MLflow
temp_dir = tempfile.mkdtemp()
# Try different artifact paths
for artifact_path in ['model_state_dict_final', 'model_state_dict_2', 'model_state_dict_1', 'model_state_dict_0']:
try:
client.download_artifacts(run_id, f"{artifact_path}/state_dict.pth", temp_dir)
state_dict = mlflow.pytorch.load_state_dict(f"{temp_dir}/{artifact_path}")
break
except:
continue
else:
raise Exception("No model artifacts found")
# Create model
eb_configs = [
EmbeddingBagConfig(
name=f"t_{feature_name}",
embedding_dim=embedding_dim,
num_embeddings=emb_counts[feature_idx],
feature_names=[feature_name],
)
for feature_idx, feature_name in enumerate(cat_cols)
]
dlrm_model = DLRM(
embedding_bag_collection=EmbeddingBagCollection(
tables=eb_configs, device=self.device
),
dense_in_features=len(dense_cols),
dense_arch_layer_sizes=dense_arch_layer_sizes,
over_arch_layer_sizes=over_arch_layer_sizes,
dense_device=self.device,
)
# Remove prefix and load state dict
if any(key.startswith('model.') for key in state_dict.keys()):
state_dict = {k[6:]: v for k, v in state_dict.items()}
dlrm_model.load_state_dict(state_dict)
self.model = dlrm_model
self.model.eval()
print(f"βœ… Model loaded from MLflow run: {run_id}")
except Exception as e:
print(f"❌ Error loading model from MLflow: {e}")
def _prepare_user_features(self, user_id: int, user_data: Optional[Dict] = None) -> Tuple[torch.Tensor, KeyedJaggedTensor]:
"""Prepare user features for inference"""
if user_data is None:
# Create default user features
user_data = {
'User-ID': user_id,
'Age': 30, # Default age
'Location': 'usa', # Default location
}
# Encode categorical features
try:
user_id_encoded = self.user_encoder.transform([str(user_id)])[0]
except:
# Handle unknown user
user_id_encoded = 0
try:
location = str(user_data.get('Location', 'usa')).split(',')[-1].strip().lower()
country_encoded = self.location_encoder.transform([location])[0]
except:
country_encoded = 0
# Age group
age = user_data.get('Age', 30)
if age < 18:
age_group = 0
elif age < 25:
age_group = 1
elif age < 35:
age_group = 2
elif age < 50:
age_group = 3
elif age < 65:
age_group = 4
else:
age_group = 5
# Get user statistics (if available)
user_activity = user_data.get('user_activity', 10) # Default
user_avg_rating = user_data.get('user_avg_rating', 6.0) # Default
age_normalized = user_data.get('Age', 30)
# Normalize dense features
dense_features = np.array([[age_normalized, 2000, user_activity, 10, user_avg_rating, 6.0]]) # Default values
dense_features = self.scaler.transform(dense_features)
dense_features = torch.tensor(dense_features, dtype=torch.float32)
return dense_features, user_id_encoded, country_encoded, age_group
def _prepare_book_features(self, book_isbn: str, book_data: Optional[Dict] = None) -> Tuple[int, int, int, int]:
"""Prepare book features for inference"""
if book_data is None:
book_data = {}
# Encode book ID
try:
book_id_encoded = self.book_encoder.transform([str(book_isbn)])[0]
except:
book_id_encoded = 0
# Encode publisher
try:
publisher = str(book_data.get('Publisher', 'Unknown'))
publisher_encoded = self.publisher_encoder.transform([publisher])[0]
except:
publisher_encoded = 0
# Publication decade
year = book_data.get('Year-Of-Publication', 2000)
decade = ((int(year) // 10) * 10)
try:
decade_encoded = preprocessing_info.get('decade_encoder', LabelEncoder()).transform([str(decade)])[0]
except:
decade_encoded = 6 # Default to 2000s
# Rating level (default to medium)
rating_level = 1
return book_id_encoded, publisher_encoded, decade_encoded, rating_level
def predict_rating(self, user_id: int, book_isbn: str,
user_data: Optional[Dict] = None,
book_data: Optional[Dict] = None) -> float:
"""
Predict rating probability for user-book pair
Args:
user_id: User ID
book_isbn: Book ISBN
user_data: Additional user data (optional)
book_data: Additional book data (optional)
Returns:
Prediction probability (0-1)
"""
if self.model is None:
print("❌ Model not loaded")
return 0.0
try:
# Prepare features
dense_features, user_id_encoded, country_encoded, age_group = self._prepare_user_features(user_id, user_data)
book_id_encoded, publisher_encoded, decade_encoded, rating_level = self._prepare_book_features(book_isbn, book_data)
# Create sparse features
kjt_values = [user_id_encoded, book_id_encoded, publisher_encoded, country_encoded, age_group, decade_encoded, rating_level]
kjt_lengths = [1] * len(kjt_values)
sparse_features = KeyedJaggedTensor.from_lengths_sync(
self.cat_cols,
torch.tensor(kjt_values),
torch.tensor(kjt_lengths, dtype=torch.int32),
)
# Make prediction
with torch.no_grad():
logits = self.model(dense_features=dense_features, sparse_features=sparse_features)
prediction = torch.sigmoid(logits).item()
return prediction
except Exception as e:
print(f"Error in prediction: {e}")
return 0.0
def get_user_recommendations(self, user_id: int,
candidate_books: List[str],
k: int = 10,
user_data: Optional[Dict] = None) -> List[Tuple[str, float]]:
"""
Get top-k book recommendations for a user
Args:
user_id: User ID
candidate_books: List of candidate book ISBNs
k: Number of recommendations
user_data: Additional user data
Returns:
List of (book_isbn, prediction_score) tuples
"""
if self.model is None:
print("❌ Model not loaded")
return []
recommendations = []
print(f"Generating recommendations for user {user_id} from {len(candidate_books)} candidates...")
for book_isbn in candidate_books:
score = self.predict_rating(user_id, book_isbn, user_data)
recommendations.append((book_isbn, score))
# Sort by score and return top-k
recommendations.sort(key=lambda x: x[1], reverse=True)
return recommendations[:k]
def batch_recommend(self, user_ids: List[int],
candidate_books: List[str],
k: int = 10) -> Dict[int, List[Tuple[str, float]]]:
"""
Generate recommendations for multiple users
Args:
user_ids: List of user IDs
candidate_books: List of candidate book ISBNs
k: Number of recommendations per user
Returns:
Dictionary mapping user_id to recommendations
"""
results = {}
for user_id in user_ids:
results[user_id] = self.get_user_recommendations(user_id, candidate_books, k)
return results
def get_similar_books(self, target_book_isbn: str,
candidate_books: List[str],
sample_users: List[int],
k: int = 10) -> List[Tuple[str, float]]:
"""
Find books similar to target book by comparing user preferences
Args:
target_book_isbn: Target book ISBN
candidate_books: List of candidate book ISBNs
sample_users: Sample users to test similarity with
k: Number of similar books
Returns:
List of (book_isbn, similarity_score) tuples
"""
target_scores = []
candidate_scores = {book: [] for book in candidate_books}
# Get predictions for target book and candidates across sample users
for user_id in sample_users:
target_score = self.predict_rating(user_id, target_book_isbn)
target_scores.append(target_score)
for book_isbn in candidate_books:
if book_isbn != target_book_isbn:
score = self.predict_rating(user_id, book_isbn)
candidate_scores[book_isbn].append(score)
# Calculate similarity based on correlation of user preferences
similarities = []
target_scores = np.array(target_scores)
for book_isbn, scores in candidate_scores.items():
if len(scores) > 0:
scores_array = np.array(scores)
# Calculate correlation as similarity measure
correlation = np.corrcoef(target_scores, scores_array)[0, 1]
if not np.isnan(correlation):
similarities.append((book_isbn, correlation))
# Sort by similarity and return top-k
similarities.sort(key=lambda x: x[1], reverse=True)
return similarities[:k]
def load_dlrm_recommender(model_source: str = "latest") -> DLRMBookRecommender:
"""
Load DLRM recommender from various sources
Args:
model_source: "latest" for latest MLflow run, "file" for local file, or specific run_id
Returns:
DLRMBookRecommender instance
"""
recommender = DLRMBookRecommender()
if model_source == "latest":
# Try to get latest MLflow run
try:
experiment = mlflow.get_experiment_by_name('dlrm-book-recommendation-book_recommender')
if experiment:
runs = mlflow.search_runs(experiment_ids=[experiment.experiment_id],
order_by=["start_time desc"], max_results=1)
if len(runs) > 0:
latest_run_id = runs.iloc[0].run_id
recommender = DLRMBookRecommender(run_id=latest_run_id)
return recommender
except:
pass
elif model_source == "file":
# Try to load from local file
for filename in ['dlrm_book_model_final.pth', 'dlrm_book_model_epoch_2.pth', 'dlrm_book_model_epoch_1.pth']:
if os.path.exists(filename):
recommender = DLRMBookRecommender(model_path=filename)
return recommender
else:
# Treat as run_id
recommender = DLRMBookRecommender(run_id=model_source)
return recommender
print("⚠️ Could not load any trained model")
return recommender
def demo_dlrm_recommendations():
"""Demo function to show DLRM recommendations"""
print("πŸš€ DLRM Book Recommendation Demo")
print("=" * 50)
# Load book data for demo
books_df = pd.read_csv('Books.csv', encoding='latin-1', low_memory=False)
users_df = pd.read_csv('Users.csv', encoding='latin-1', low_memory=False)
ratings_df = pd.read_csv('Ratings.csv', encoding='latin-1', low_memory=False)
books_df.columns = books_df.columns.str.replace('"', '')
users_df.columns = users_df.columns.str.replace('"', '')
ratings_df.columns = ratings_df.columns.str.replace('"', '')
# Load recommender
recommender = load_dlrm_recommender("file")
if recommender.model is None:
print("❌ No trained model found. Please run training first.")
return
# Get sample user and books
sample_user_id = ratings_df['User-ID'].iloc[0]
sample_books = books_df['ISBN'].head(20).tolist()
print(f"\nπŸ“š Getting recommendations for User {sample_user_id}")
print(f"Testing with {len(sample_books)} candidate books...")
# Get recommendations
recommendations = recommender.get_user_recommendations(
user_id=sample_user_id,
candidate_books=sample_books,
k=10
)
print(f"\n🎯 Top 10 DLRM Recommendations:")
print("-" * 50)
for i, (book_isbn, score) in enumerate(recommendations, 1):
# Get book info
book_info = books_df[books_df['ISBN'] == book_isbn]
if len(book_info) > 0:
book = book_info.iloc[0]
title = book['Book-Title']
author = book['Book-Author']
print(f"{i:2d}. {title} by {author}")
print(f" ISBN: {book_isbn}, Score: {score:.4f}")
else:
print(f"{i:2d}. ISBN: {book_isbn}, Score: {score:.4f}")
print()
# Show user's actual ratings for comparison
user_ratings = ratings_df[ratings_df['User-ID'] == sample_user_id]
if len(user_ratings) > 0:
print(f"\nπŸ“– User {sample_user_id}'s Actual Reading History:")
print("-" * 50)
for _, rating in user_ratings.head(5).iterrows():
book_info = books_df[books_df['ISBN'] == rating['ISBN']]
if len(book_info) > 0:
book = book_info.iloc[0]
print(f"β€’ {book['Book-Title']} by {book['Book-Author']} - Rating: {rating['Book-Rating']}/10")
# Test book similarity
if len(recommendations) > 0:
target_book = recommendations[0][0]
print(f"\nπŸ” Finding books similar to: {target_book}")
similar_books = recommender.get_similar_books(
target_book_isbn=target_book,
candidate_books=sample_books,
sample_users=ratings_df['User-ID'].head(10).tolist(),
k=5
)
print(f"\nπŸ“š Similar Books:")
print("-" * 30)
for i, (book_isbn, similarity) in enumerate(similar_books, 1):
book_info = books_df[books_df['ISBN'] == book_isbn]
if len(book_info) > 0:
book = book_info.iloc[0]
print(f"{i}. {book['Book-Title']} (similarity: {similarity:.3f})")
if __name__ == "__main__":
demo_dlrm_recommendations()