Spaces:
Sleeping
Sleeping
Edvin Behdadijd
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -69,15 +69,15 @@ def extract_ner_info(text, nlp):
|
|
| 69 |
age = None
|
| 70 |
|
| 71 |
for i in range(len(ner_results)):
|
| 72 |
-
if ner_results[i]['entity'] == 'B-
|
| 73 |
full_name = ner_results[i]['word']
|
| 74 |
for j in range(i+1, len(ner_results)):
|
| 75 |
-
if ner_results[j]['entity'].startswith('I-
|
| 76 |
full_name += ner_results[j]['word'].replace('##', '')
|
| 77 |
else:
|
| 78 |
break
|
| 79 |
|
| 80 |
-
if ner_results[i]['entity'] == '
|
| 81 |
loc = ner_results[i]['word']
|
| 82 |
|
| 83 |
age_match = re.search(r'سن\s*:\s*(\d+)', text)
|
|
@@ -86,6 +86,7 @@ def extract_ner_info(text, nlp):
|
|
| 86 |
|
| 87 |
return full_name, loc, age
|
| 88 |
|
|
|
|
| 89 |
def process_text(input_text):
|
| 90 |
# مسیر فایل اکسلها را وارد کنید
|
| 91 |
job_excel_file_path = 'jobs_output.xlsx'
|
|
@@ -167,7 +168,7 @@ def process_text(input_text):
|
|
| 167 |
skill_score, common_skills = compare_skills(skills_in_fixed_text, skills_in_input_text)
|
| 168 |
|
| 169 |
# تنظیم و آمادهسازی مدل NER
|
| 170 |
-
model_name_or_path = "
|
| 171 |
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
| 172 |
model = AutoModelForTokenClassification.from_pretrained(model_name_or_path) # Pytorch
|
| 173 |
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
|
|
|
|
| 69 |
age = None
|
| 70 |
|
| 71 |
for i in range(len(ner_results)):
|
| 72 |
+
if ner_results[i]['entity'] == 'B-pers':
|
| 73 |
full_name = ner_results[i]['word']
|
| 74 |
for j in range(i+1, len(ner_results)):
|
| 75 |
+
if ner_results[j]['entity'].startswith('I-pers'):
|
| 76 |
full_name += ner_results[j]['word'].replace('##', '')
|
| 77 |
else:
|
| 78 |
break
|
| 79 |
|
| 80 |
+
if ner_results[i]['entity'] == 'I-fac' and not loc:
|
| 81 |
loc = ner_results[i]['word']
|
| 82 |
|
| 83 |
age_match = re.search(r'سن\s*:\s*(\d+)', text)
|
|
|
|
| 86 |
|
| 87 |
return full_name, loc, age
|
| 88 |
|
| 89 |
+
|
| 90 |
def process_text(input_text):
|
| 91 |
# مسیر فایل اکسلها را وارد کنید
|
| 92 |
job_excel_file_path = 'jobs_output.xlsx'
|
|
|
|
| 168 |
skill_score, common_skills = compare_skills(skills_in_fixed_text, skills_in_input_text)
|
| 169 |
|
| 170 |
# تنظیم و آمادهسازی مدل NER
|
| 171 |
+
model_name_or_path = "NLPclass/Named-entity-recognition"
|
| 172 |
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
| 173 |
model = AutoModelForTokenClassification.from_pretrained(model_name_or_path) # Pytorch
|
| 174 |
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
|