Spaces:
Paused
Paused
File size: 10,833 Bytes
7c81ca5 da887e7 7c81ca5 da887e7 7c81ca5 dda2256 da887e7 dda2256 da887e7 aa98d8e 7c81ca5 dda2256 7c81ca5 dda2256 7c81ca5 da887e7 7c81ca5 da887e7 7c81ca5 da887e7 7c81ca5 da887e7 7c81ca5 da887e7 7c81ca5 da887e7 7c81ca5 da887e7 7c81ca5 da887e7 7c81ca5 da887e7 7c81ca5 da887e7 7c81ca5 da887e7 7c81ca5 d509302 7c81ca5 d509302 7c81ca5 da887e7 7c81ca5 da887e7 7c81ca5 da887e7 7c81ca5 da887e7 7c81ca5 da887e7 7c81ca5 da887e7 7c81ca5 da887e7 7c81ca5 da887e7 7c81ca5 d509302 7c81ca5 da887e7 7c81ca5 da887e7 7c81ca5 da887e7 7c81ca5 72155bf 3e6ea16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
# FILE: app.py
# DESCRIPTION: Final Gradio web interface for the ADUC-SDR Video Suite.
# This version is refactored to use the central LtxAducOrchestrator, simplifying the UI logic
# and making it a pure client of the backend services.
import gradio as gr
import traceback
import sys
import os
import logging
from PIL import Image
# ==============================================================================
# --- IMPORTAÇÃO DOS SERVIÇOS DE BACKEND E UTILS ---
# ==============================================================================
#try:
# --- MUDANÇA PRINCIPAL: Importamos apenas o ORQUESTRADOR ---
# O orquestrador é agora nosso único ponto de entrada para a geração de vídeo.
from api.ltx.ltx_aduc_orchestrator import ltx_aduc_orchestrator
# O SeedVR (upscaler de resolução) ainda é um serviço separado que pode ser chamado após a geração.
from api.seedvr.seedvr_aduc_pipeline import seed_aduc_pipeline
# Nosso decorador de logging para depuração
from utils.debug_utils import log_function_io
logging.info("All backend services (Orchestrator, SeedVR) and debug utils imported successfully.")
# ==============================================================================
# --- FUNÇÕES WRAPPER (PONTE ENTRE UI E BACKEND) ---
# ==============================================================================
@log_function_io
def run_orchestrated_generation(
prompt: str, start_img_path: str,
height: int, width: int, duration: float,
fp_guidance_preset: str, fp_guidance_scale_list: str, fp_stg_scale_list: str,
fp_num_inference_steps: int,
progress=gr.Progress(track_tqdm=True)
) -> tuple:
"""
Função wrapper simplificada que coleta dados da UI e chama o orquestrador principal.
"""
try:
logging.info("[UI] Request received. Submitting job to the main orchestrator...")
# Monta o dicionário de configurações avançadas LTX a partir da UI
ltx_configs = {
"guidance_preset": fp_guidance_preset,
"guidance_scale_list": fp_guidance_scale_list,
"stg_scale_list": fp_stg_scale_list,
"num_inference_steps": fp_num_inference_steps
}
# Carrega a imagem inicial para um objeto PIL, que é o que o orquestrador espera.
initial_image_pil = Image.open(start_img_path).convert("RGB") if start_img_path else None
# --- CHAMADA ÚNICA E LIMPA PARA O ORQUESTRADOR ---
video_path = ltx_aduc_orchestrator(
prompt=prompt,
initial_image=initial_image_pil,
height=height,
width=width,
duration_in_seconds=duration,
ltx_configs=ltx_configs
)
if not video_path:
raise RuntimeError("Orchestrator failed to return a valid video path. Check backend logs for details.")
logging.info(f"[UI] Orchestrator job successful. Video path: {video_path}")
# O estado agora pode ser mais simples, apenas guardando o caminho do vídeo gerado para o próximo passo (SeedVR).
new_state = {"low_res_video": video_path}
return video_path, new_state, gr.update(visible=True)
except Exception as e:
error_message = f"❌ An error occurred during the orchestrated generation:\n{e}"
logging.error(f"{error_message}\nDetails: {traceback.format_exc()}", exc_info=True)
raise gr.Error(error_message)
@log_function_io
def run_seedvr_upscaling(state: dict, seed: int, resolution: int, batch_size: int, fps: int, progress=gr.Progress(track_tqdm=True)) -> tuple:
"""Wrapper para o upscale de resolução SeedVR. Esta função permanece a mesma."""
if not state or not state.get("low_res_video"):
raise gr.Error("Error: Please generate a base video in Step 1 before upscaling.")
if not seed_aduc_pipeline:
raise gr.Error("Error: The SeedVR upscaling server is not available.")
try:
logging.info(f"[UI] Requesting SeedVR upscaling for video: {state.get('low_res_video')}")
def progress_wrapper(p, desc=""): progress(p, desc=desc)
output_filepath = seed_aduc_pipeline.run_inference(
file_path=state["low_res_video"], seed=int(seed), resolution=int(resolution),
batch_size=int(batch_size), fps=float(fps), progress=progress_wrapper
)
status_message = f"✅ Upscaling complete!\nSaved to: {output_filepath}"
logging.info(f"[UI] SeedVR upscaling successful. Path: {output_filepath}")
return gr.update(value=output_filepath), gr.update(value=status_message)
except Exception as e:
error_message = f"❌ An error occurred during SeedVR Upscaling:\n{e}"
logging.error(f"{error_message}\nDetails: {traceback.format_exc()}", exc_info=True)
return None, gr.update(value=error_message)
# ==============================================================================
# --- CONSTRUÇÃO DA INTERFACE GRADIO ---
# ==============================================================================
def build_ui():
"""Constrói a interface completa do Gradio."""
with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo")) as demo:
app_state = gr.State(value={"low_res_video": None})
ui_components = {}
gr.Markdown("# ADUC-SDR Video Suite - Orchestrated Workflow", elem_id="main-title")
with gr.Row():
with gr.Column(scale=1): _build_generation_controls(ui_components)
with gr.Column(scale=1):
gr.Markdown("### Etapa 1: Vídeo Base Gerado pelo Orquestrador")
ui_components['low_res_video_output'] = gr.Video(label="O resultado aparecerá aqui", interactive=False)
_build_postprod_controls(ui_components)
_register_event_handlers(app_state, ui_components)
return demo
def _build_generation_controls(ui: dict):
"""Constrói os componentes da UI para a Etapa 1: Geração."""
gr.Markdown("### Configurações de Geração")
ui['prompt'] = gr.Textbox(label="Prompt(s) de Geração",
info="Escreva sua história. Cada nova linha será tratada como uma nova cena.",
value="Um leão majestoso caminha pela savana\nEle sobe em uma grande pedra e olha o horizonte",
lines=4)
ui['start_image'] = gr.Image(label="Imagem de Início (Opcional)", type="filepath", sources=["upload"])
with gr.Accordion("Parâmetros Principais", open=True):
ui['duration'] = gr.Slider(label="Duração Total (s)", value=4, step=1, minimum=1, maximum=30)
with gr.Row():
ui['height'] = gr.Slider(label="Altura", value=432, step=8, minimum=256, maximum=1024)
ui['width'] = gr.Slider(label="Largura", value=768, step=8, minimum=256, maximum=1024)
with gr.Accordion("Opções Avançadas LTX", open=False):
ui['fp_num_inference_steps'] = gr.Slider(label="Número de Passos", minimum=1, maximum=100, step=1, value=20)
ui['fp_guidance_preset'] = gr.Dropdown(label="Preset de Guiagem", choices=["Padrão (Recomendado)", "Customizado"], value="Padrão (Recomendado)")
with gr.Group(visible=False) as ui['custom_guidance_group']:
gr.Markdown("⚠️ Edite as listas em formato JSON. Ex: `[1.0, 2.5, 3.0]`")
ui['fp_guidance_scale_list'] = gr.Textbox(label="Lista de Guidance Scale", value="[1, 1, 6, 8, 6, 1, 1]")
ui['fp_stg_scale_list'] = gr.Textbox(label="Lista de STG Scale (Movimento)", value="[0, 0, 4, 4, 4, 2, 1]")
ui['generate_low_btn'] = gr.Button("1. Gerar Vídeo via Orquestrador", variant="primary")
def _build_postprod_controls(ui: dict):
"""Constrói os componentes da UI para a Etapa 2: Pós-Produção (Upscaling)."""
with gr.Group(visible=False) as ui['post_prod_group']:
gr.Markdown("--- \n## Etapa 2: Pós-Produção")
with gr.Tabs():
with gr.TabItem("✨ Upscaler de Resolução (SeedVR)"):
is_seedvr_available = seed_aduc_pipeline is not None
if not is_seedvr_available:
gr.Markdown("🔴 **AVISO: O serviço SeedVR não está disponível.**")
with gr.Row():
with gr.Column(scale=1):
ui['seedvr_seed'] = gr.Slider(minimum=0, maximum=999999, value=42, step=1, label="Seed")
ui['seedvr_resolution'] = gr.Slider(minimum=720, maximum=2160, value=1080, step=8, label="Resolução Vertical Alvo")
ui['seedvr_batch_size'] = gr.Slider(minimum=1, maximum=16, value=4, step=1, label="Batch Size por GPU")
ui['seedvr_fps'] = gr.Number(label="FPS de Saída (0 = original)", value=0)
ui['run_seedvr_btn'] = gr.Button("2. Iniciar Upscaling SeedVR", variant="primary", interactive=is_seedvr_available)
with gr.Column(scale=1):
ui['seedvr_video_output'] = gr.Video(label="Vídeo com Upscale SeedVR", interactive=False)
ui['seedvr_status_box'] = gr.Textbox(label="Status do SeedVR", value="Aguardando...", lines=3, interactive=False)
def _register_event_handlers(app_state: gr.State, ui: dict):
"""Registra todos os manipuladores de eventos do Gradio."""
def toggle_custom_guidance(preset_choice: str) -> gr.update:
return gr.update(visible=(preset_choice == "Customizado"))
ui['fp_guidance_preset'].change(fn=toggle_custom_guidance, inputs=ui['fp_guidance_preset'], outputs=ui['custom_guidance_group'])
gen_inputs = [
ui['prompt'], ui['start_image'],
ui['height'], ui['width'], ui['duration'],
ui['fp_guidance_preset'], ui['fp_guidance_scale_list'], ui['fp_stg_scale_list'],
ui['fp_num_inference_steps'],
]
gen_outputs = [ui['low_res_video_output'], app_state, ui['post_prod_group']]
ui['generate_low_btn'].click(fn=run_orchestrated_generation, inputs=gen_inputs, outputs=gen_outputs)
if 'run_seedvr_btn' in ui and ui['run_seedvr_btn'].interactive:
seedvr_inputs = [app_state, ui['seedvr_seed'], ui['seedvr_resolution'], ui['seedvr_batch_size'], ui['seedvr_fps']]
seedvr_outputs = [ui['seedvr_video_output'], ui['seedvr_status_box']]
ui['run_seedvr_btn'].click(fn=run_seedvr_upscaling, inputs=seedvr_inputs, outputs=seedvr_outputs)
# ==============================================================================
# --- PONTO DE ENTRADA DA APLICAÇÃO ---
# ==============================================================================
if __name__ == "__main__":
demo = build_ui()
demo.queue().launch(server_name="0.0.0.0", server_port=7860, debug=True, show_error=True) |