Spaces:
Paused
Paused
File size: 12,090 Bytes
386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d e6712fd fcf054d 386d75b fcf054d 7edcb31 fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import gradio as gr
import torch
import numpy as np
import tempfile
import os
import yaml
import json
import threading
from pathlib import Path
# Importações de Hugging Face
from huggingface_hub import snapshot_download, HfFolder
from transformers import T5EncoderModel, T5TokenizerFast
from diffusers import LTXLatentUpsamplePipeline
from diffusers.models import AutoencoderKLLTXVideo, LTXVideoTransformer3DModel
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
# Nossa pipeline customizada e utilitários
from pipeline_ltx_condition_control import LTXConditionPipeline, LTXVideoCondition
from diffusers.utils import export_to_video
from PIL import Image, ImageOps
import imageio
# --- Configuração de Logging e Avisos ---
import warnings
import logging
warnings.filterwarnings("ignore", category="UserWarning")
warnings.filterwarnings("ignore", category="FutureWarning")
warnings.filterwarnings("ignore", message=".*")
from huggingface_hub import logging as hf_logging
hf_logging.set_verbosity_error()
# --- Classe de Serviço para Carregamento e Gerenciamento dos Modelos ---
class VideoGenerationService:
"""
Encapsula o carregamento e a configuração das pipelines de IA.
Carrega os componentes de forma explícita e modular a partir de um arquivo de configuração.
"""
def __init__(self, config_path: Path):
print("=== [Serviço de Geração de Vídeo] Inicializando... ===")
if not torch.cuda.is_available():
raise RuntimeError("CUDA é necessário para rodar este serviço.")
self.device = "cuda"
self.torch_dtype = torch.bfloat16
print(f"[Init] Dispositivo: {self.device}, DType: {self.torch_dtype}")
with open(config_path, "r") as f:
self.cfg = yaml.safe_load(f)
print(f"[Init] Configuração carregada de: {config_path}")
print(json.dumps(self.cfg, indent=2))
# Parâmetros do YAML
self.base_repo = self.cfg.get("base_repo")
self.checkpoint_path = self.cfg.get("checkpoint_path")
self.upscaler_repo = self.cfg.get("spatial_upscaler_model_path")
self._initialize()
print("=== [Serviço de Geração de Vídeo] Inicialização concluída. ===")
def _initialize(self):
print(f"=== [Init] Baixando snapshot do repositório base: {self.base_repo} ===")
local_repo_path = snapshot_download(
repo_id=self.base_repo,
token=os.getenv("HF_TOKEN") or HfFolder.get_token(),
resume_download=True
)
print("[Init] Carregando componentes da pipeline a partir de arquivos locais...")
self.vae = AutoencoderKLLTXVideo.from_pretrained(local_repo_path, subfolder="vae", torch_dtype=self.torch_dtype)
self.text_encoder = T5EncoderModel.from_pretrained(local_repo_path, subfolder="text_encoder", torch_dtype=self.torch_dtype)
self.tokenizer = T5TokenizerFast.from_pretrained(local_repo_path, subfolder="tokenizer")
self.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(local_repo_path, subfolder="scheduler")
# Causa do erro anterior: desativar explicitamente o dynamic shifting para compatibilidade
if hasattr(self.scheduler.config, 'use_dynamic_shifting') and self.scheduler.config.use_dynamic_shifting:
print("[Init] Desativando 'use_dynamic_shifting' no scheduler.")
self.scheduler.config.use_dynamic_shifting = False
print(f"[Init] Carregando pesos do Transformer de: {self.checkpoint_path}")
self.transformer = LTXVideoTransformer3DModel.from_pretrained(
local_repo_path, subfolder="transformer", weight_name=self.checkpoint_path, torch_dtype=self.torch_dtype
)
print("[Init] Montando a LTXConditionPipeline...")
self.pipeline = LTXConditionPipeline(
vae=self.vae, text_encoder=self.text_encoder, tokenizer=self.tokenizer,
scheduler=self.scheduler, transformer=self.transformer
)
self.pipeline.to(self.device)
self.pipeline.vae.enable_tiling()
print(f"[Init] Carregando o upsampler espacial de: {self.upscaler_repo}")
self.upsampler = LTXLatentUpsamplePipeline.from_pretrained(
self.upscaler_repo, vae=self.vae, torch_dtype=self.torch_dtype
)
self.upsampler.to(self.device)
# --- Inicialização da Aplicação ---
CONFIG_PATH = Path("ltx_config.yaml")
if not CONFIG_PATH.exists():
raise FileNotFoundError(f"Arquivo de configuração '{CONFIG_PATH}' não encontrado. Crie-o antes de executar a aplicação.")
# Instancia o serviço que carrega e mantém os modelos
service = VideoGenerationService(config_path=CONFIG_PATH)
pipeline = service.pipeline
pipe_upsample = service.upsampler
FPS = 24
# --- Lógica Principal da Geração de Vídeo ---
def round_to_nearest_resolution_acceptable_by_vae(height, width, vae_temporal_compression_ratio):
height = height - (height % vae_temporal_compression_ratio)
width = width - (width % vae_temporal_compression_ratio)
return height, width
def prepare_and_generate_video(
condition_image_1, condition_strength_1, condition_frame_index_1,
condition_image_2, condition_strength_2, condition_frame_index_2,
prompt, duration, negative_prompt,
height, width, guidance_scale, seed, randomize_seed,
progress=gr.Progress(track_tqdm=True)
):
try:
conditions_data = [
(condition_image_1, condition_strength_1, condition_frame_index_1),
(condition_image_2, condition_strength_2, condition_frame_index_2)
]
if randomize_seed:
seed = random.randint(0, 2**32 - 1)
num_frames = int(duration * FPS) + 1
temporal_compression = pipeline.vae_temporal_compression_ratio
num_frames = ((num_frames - 1) // temporal_compression) * temporal_compression + 1
# Etapa 1: Preparar condições para baixa resolução
downscale_factor = 2 / 3
downscaled_height = int(height * downscale_factor)
downscaled_width = int(width * downscale_factor)
downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(
downscaled_height, downscaled_width, pipeline.vae_temporal_compression_ratio
)
conditions_low_res = []
for image, strength, frame_index in conditions_data:
if image is not None:
processed_image = ImageOps.fit(image, (downscaled_width, downscaled_height), Image.LANCZOS)
conditions_low_res.append(LTXVideoCondition(
image=processed_image, strength=strength, frame_index=int(frame_index)
))
pipeline_args_low_res = {"conditions": conditions_low_res} if conditions_low_res else {}
latents = pipeline(
prompt=prompt, negative_prompt=negative_prompt, width=downscaled_width, height=downscaled_height,
num_frames=num_frames, generator=torch.Generator().manual_seed(seed),
output_type="latent", **pipeline_args_low_res
).frames
# Etapa 2: Upscale
upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2
upscaled_latents = pipe_upsample(latents=latents, output_type="latent").frames
# Etapa 3: Preparar condições para alta resolução (para manter frames imutáveis)
conditions_high_res = []
for image, strength, frame_index in conditions_data:
if image is not None:
processed_image_high_res = ImageOps.fit(image, (upscaled_width, upscaled_height), Image.LANCZOS)
conditions_high_res.append(LTXVideoCondition(
image=processed_image_high_res, strength=strength, frame_index=int(frame_index)
))
pipeline_args_high_res = {"conditions": conditions_high_res} if conditions_high_res else {}
final_video_frames_np = pipeline(
prompt=prompt, negative_prompt=negative_prompt, width=upscaled_width, height=upscaled_height,
num_frames=num_frames, denoise_strength=0.999, latents=upscaled_latents,
generator=torch.Generator(device="cuda").manual_seed(seed),
output_type="np", **pipeline_args_high_res
).frames[0]
# Etapa 4: Exportação
video_uint8_frames = [(frame * 255).astype(np.uint8) for frame in final_video_frames_np]
output_filename = "output.mp4"
with imageio.get_writer(output_filename, fps=FPS, quality=8, macro_block_size=1) as writer:
for frame_idx, frame_data in enumerate(video_uint8_frames):
progress((frame_idx + 1) / len(video_uint8_frames), desc="Codificando frames do vídeo...")
writer.append_data(frame_data)
return output_filename, seed
except Exception as e:
print(f"Ocorreu um erro: {e}")
import traceback
traceback.print_exc()
return None, seed
# --- Interface Gráfica com Gradio ---
with gr.Blocks(theme=gr.themes.Ocean(font=[gr.themes.GoogleFont("Lexend Deca"), "sans-serif"]), delete_cache=(60, 900)) as demo:
gr.Markdown("# Geração de Vídeo com LTX\n**Crie vídeos a partir de texto e imagens de condição.**")
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(label="Prompt", placeholder="Descreva o vídeo que você quer gerar...", lines=3, value="O Coringa dançando em um quarto escuro, iluminação dramática.")
with gr.Accordion("Imagem de Condição 1", open=True):
condition_image_1 = gr.Image(label="Imagem 1", type="pil")
with gr.Row():
condition_strength_1 = gr.Slider(label="Peso", minimum=0.0, maximum=1.0, step=0.05, value=1.0)
condition_frame_index_1 = gr.Number(label="Frame", value=0, precision=0)
with gr.Accordion("Imagem de Condição 2", open=False):
condition_image_2 = gr.Image(label="Imagem 2", type="pil")
with gr.Row():
condition_strength_2 = gr.Slider(label="Peso", minimum=0.0, maximum=1.0, step=0.05, value=1.0)
condition_frame_index_2 = gr.Number(label="Frame", value=0, precision=0)
duration = gr.Slider(label="Duração (s)", minimum=1.0, maximum=10.0, step=0.5, value=2)
with gr.Accordion("Configurações Avançadas", open=False):
negative_prompt = gr.Textbox(label="Prompt Negativo", lines=2, value="pior qualidade, embaçado, tremido, distorcido")
with gr.Row():
height = gr.Slider(label="Altura", minimum=256, maximum=1536, step=32, value=768)
width = gr.Slider(label="Largura", minimum=256, maximum=1536, step=32, value=1152)
with gr.Row():
guidance_scale = gr.Slider(label="Guidance", minimum=1.0, maximum=5.0, step=0.1, value=1.0)
randomize_seed = gr.Checkbox(label="Seed Aleatória", value=True)
seed = gr.Number(label="Seed", value=0, precision=0)
generate_btn = gr.Button("Gerar Vídeo", variant="primary", size="lg")
with gr.Column(scale=1):
output_video = gr.Video(label="Vídeo Gerado", height=400)
generated_seed = gr.Number(label="Seed Utilizada", interactive=False)
generate_btn.click(
fn=prepare_and_generate_video,
inputs=[
condition_image_1, condition_strength_1, condition_frame_index_1,
condition_image_2, condition_strength_2, condition_frame_index_2,
prompt, duration, negative_prompt,
height, width, guidance_scale, seed, randomize_seed,
],
outputs=[output_video, generated_seed]
)
if __name__ == "__main__":
demo.queue().launch(server_name="0.0.0.0", server_port=7860, debug=True, show_error=True) |