File size: 38,439 Bytes
fd4abdb
 
 
 
ab2fc5d
fd4abdb
 
 
 
39769b3
fd4abdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21e9173
fd4abdb
 
 
 
 
 
 
 
 
953982d
 
fd4abdb
905c79b
ab2fc5d
 
21e9173
 
ab2fc5d
 
 
 
 
 
 
 
 
 
 
 
21e9173
 
 
 
 
ab2fc5d
 
 
 
 
fd4abdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc04cfa
 
 
 
 
21e9173
bc04cfa
 
 
21e9173
bc04cfa
 
 
 
 
 
21e9173
bc04cfa
21e9173
bc04cfa
21e9173
bc04cfa
 
 
 
21e9173
bc04cfa
 
 
 
21e9173
bc04cfa
 
21e9173
fd4abdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab2fc5d
 
 
 
 
 
 
 
 
 
 
 
 
f736eae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd4abdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d27b48
ab2fc5d
 
 
 
 
 
 
6f8a8f1
 
ab2fc5d
 
 
 
 
 
 
 
 
6f8a8f1
 
ab2fc5d
fd4abdb
ab2fc5d
fd4abdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6a9c29
 
 
 
 
 
 
 
 
 
 
 
 
fd4abdb
 
 
 
 
 
cedf791
fd4abdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21e9173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd4abdb
953982d
fd4abdb
 
21e9173
 
fd4abdb
 
 
 
 
21e9173
 
 
 
 
fd4abdb
21e9173
 
 
 
 
 
fd4abdb
21e9173
 
fd4abdb
21e9173
 
 
ab2fc5d
21e9173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
953982d
8ee3160
21e9173
 
 
 
 
 
 
 
fd4abdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
953982d
fd4abdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21e9173
fd4abdb
 
 
 
 
21e9173
fd4abdb
 
21e9173
fd4abdb
 
 
 
 
 
 
 
 
 
 
 
bc04cfa
 
fd4abdb
 
953982d
fd4abdb
 
4ed8366
 
 
 
 
 
 
 
 
 
 
953982d
fd4abdb
21e9173
 
 
 
 
 
 
fd4abdb
21e9173
 
 
35be4e2
 
 
fd4abdb
35be4e2
 
 
953982d
 
39769b3
953982d
 
a638401
35be4e2
a638401
21e9173
a638401
 
 
 
 
35be4e2
39769b3
953982d
21e9173
 
953982d
 
 
21e9173
35be4e2
 
953982d
35be4e2
 
953982d
 
35be4e2
 
953982d
21e9173
 
 
 
 
 
 
 
 
35be4e2
21e9173
 
 
 
 
 
5577a09
35be4e2
21e9173
 
 
 
5577a09
39769b3
 
ab2fc5d
21e9173
 
ab2fc5d
21e9173
ab2fc5d
 
21e9173
5577a09
 
 
35be4e2
 
21e9173
35be4e2
 
 
953982d
 
35be4e2
21e9173
 
35be4e2
953982d
35be4e2
21e9173
35be4e2
953982d
21e9173
 
 
 
 
 
35be4e2
21e9173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab2fc5d
fd4abdb
21e9173
 
fd4abdb
4ed8366
fd4abdb
 
 
 
 
35be4e2
fd4abdb
 
21e9173
 
 
 
fd4abdb
 
4ed8366
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
# ltx_server.py — VideoService (beta 1.1)
# Sempre output_type="latent"; no final: VAE (bloco inteiro) → pixels → MP4.
# Ignora UserWarning/FutureWarning e injeta VAE no manager com dtype/device corretos.
# --- 0. WARNINGS E AMBIENTE ---

import warnings
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", message=".*")
from huggingface_hub import logging
logging.set_verbosity_error()
logging.set_verbosity_warning()
logging.set_verbosity_info()
logging.set_verbosity_debug()
LTXV_DEBUG=1
LTXV_FRAME_LOG_EVERY=8
import os, subprocess, shlex, tempfile
import torch
import json
import numpy as np
import random
import os
import shlex
import yaml
from typing import List, Dict
from pathlib import Path
import imageio
from PIL import Image # Import adicionado para handle_media_upload_for_dims
import tempfile
from huggingface_hub import hf_hub_download
import sys
import subprocess
import gc
import shutil
import contextlib
import time
import traceback
from einops import rearrange
import torch.nn.functional as F
from managers.vae_manager import vae_manager_singleton
from tools.video_encode_tool import video_encode_tool_singleton
DEPS_DIR = Path("/data")
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"

# CORREÇÃO: Movido run_setup para o início para garantir que seja definido antes de ser chamado.
def run_setup():
    setup_script_path = "setup.py"
    if not os.path.exists(setup_script_path):
        print("[DEBUG] 'setup.py' não encontrado. Pulando clonagem de dependências.")
        return
    try:
        print("[DEBUG] Executando setup.py para dependências...")
        subprocess.run([sys.executable, setup_script_path], check=True)
        print("[DEBUG] Setup concluído com sucesso.")
    except subprocess.CalledProcessError as e:
        print(f"[DEBUG] ERRO no setup.py (code {e.returncode}). Abortando.")
        sys.exit(1)
        
if not LTX_VIDEO_REPO_DIR.exists():
    print(f"[DEBUG] Repositório não encontrado em {LTX_VIDEO_REPO_DIR}. Rodando setup...")
    run_setup()

def add_deps_to_path():
    repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
    if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path:
        sys.path.insert(0, repo_path)
        print(f"[DEBUG] Repo adicionado ao sys.path: {repo_path}")
def _query_gpu_processes_via_nvml(device_index: int) -> List[Dict]:
    try:
        import psutil
        import pynvml as nvml
        nvml.nvmlInit()
        handle = nvml.nvmlDeviceGetHandleByIndex(device_index)
        try:
            procs = nvml.nvmlDeviceGetComputeRunningProcesses_v3(handle)
        except Exception:
            procs = nvml.nvmlDeviceGetComputeRunningProcesses(handle)
        results = []
        for p in procs:
            pid = int(p.pid)
            used_mb = None
            try:
                if getattr(p, "usedGpuMemory", None) is not None and p.usedGpuMemory not in (0,):
                    used_mb = max(0, int(p.usedGpuMemory) // (1024 * 1024))
            except Exception:
                used_mb = None
            name = "unknown"
            user = "unknown"
            try:
                import psutil
                pr = psutil.Process(pid)
                name = pr.name()
                user = pr.username()
            except Exception:
                pass
            results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb})
        nvml.nvmlShutdown()
        return results
    except Exception:
        return []
def _query_gpu_processes_via_nvidiasmi(device_index: int) -> List[Dict]:
    cmd = f"nvidia-smi -i {device_index} --query-compute-apps=pid,process_name,used_memory --format=csv,noheader,nounits"
    try:
        out = subprocess.check_output(shlex.split(cmd), stderr=subprocess.STDOUT, text=True, timeout=2.0)
    except Exception:
        return []
    results = []
    for line in out.strip().splitlines():
        parts = [p.strip() for p in line.split(",")]
        if len(parts) >= 3:
            try:
                pid = int(parts[0]); name = parts[1]; used_mb = int(parts[2])
                user = "unknown"
                try:
                    import psutil
                    pr = psutil.Process(pid)
                    user = pr.username()
                except Exception:
                    pass
                results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb})
            except Exception:
                continue
    return results
def calculate_new_dimensions(orig_w, orig_h, divisor=8):
    if orig_w == 0 or orig_h == 0:
        return 512, 512
    if orig_w >= orig_h:
        aspect_ratio = orig_w / orig_h
        new_h = 512
        new_w = new_h * aspect_ratio
    else:
        aspect_ratio = orig_h / orig_w
        new_w = 512
        new_h = new_w * aspect_ratio
    final_w = int(round(new_w / divisor)) * divisor
    final_h = int(round(new_h / divisor)) * divisor
    final_w = max(divisor, final_w)
    final_h = max(divisor, final_h)
    print(f"[Dimension Calc] Original: {orig_w}x{orig_h} -> Calculado: {new_w:.0f}x{new_h:.0f} -> Final (divisível por {divisor}): {final_w}x{final_h}")
    return final_h, final_w
def handle_media_upload_for_dims(filepath, current_h, current_w):
    # CORREÇÃO: Gradio (`gr`) não deve ser usado no backend. Retornando tupla diretamente.
    if not filepath or not os.path.exists(str(filepath)):
        return current_h, current_w
    try:
        if str(filepath).lower().endswith(('.png', '.jpg', '.jpeg', '.webp')):
            with Image.open(filepath) as img:
                orig_w, orig_h = img.size
        else: 
            with imageio.get_reader(filepath) as reader:
                meta = reader.get_meta_data()
                orig_w, orig_h = meta.get('size', (current_w, current_h))
        new_h, new_w = calculate_new_dimensions(orig_w, orig_h)
        return new_h, new_w
    except Exception as e:
        print(f"Erro ao processar mídia para dimensões: {e}")
        return current_h, current_w
def _gpu_process_table(processes: List[Dict], current_pid: int) -> str:
    if not processes:
        return "  - Processos ativos: (nenhum)\n"
    processes = sorted(processes, key=lambda x: (x.get("used_mb") or 0), reverse=True)
    lines = ["  - Processos ativos (PID | USER | NAME | VRAM MB):"]
    for p in processes:
        star = "*" if p["pid"] == current_pid else " "
        used_str = str(p["used_mb"]) if p.get("used_mb") is not None else "N/A"
        lines.append(f"    {star} {p['pid']} | {p['user']} | {p['name']} | {used_str}")
    return "\n".join(lines) + "\n"
def log_tensor_info(tensor, name="Tensor"):
    if not isinstance(tensor, torch.Tensor):
        print(f"\n[INFO] '{name}' não é tensor.")
        return
    print(f"\n--- Tensor: {name} ---")
    print(f"  - Shape: {tuple(tensor.shape)}")
    print(f"  - Dtype: {tensor.dtype}")
    print(f"  - Device: {tensor.device}")
    if tensor.numel() > 0:
        try:
            print(f"  - Min: {tensor.min().item():.4f}  Max: {tensor.max().item():.4f}  Mean: {tensor.mean().item():.4f}")
        except Exception:
            pass
    print("------------------------------------------\n")
add_deps_to_path()
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
from ltx_video.models.autoencoders.vae_encode import un_normalize_latents, normalize_latents
from ltx_video.pipelines.pipeline_ltx_video import adain_filter_latent
from api.ltx.inference import (
    create_ltx_video_pipeline,
    create_latent_upsampler,
    load_image_to_tensor_with_resize_and_crop,
    seed_everething,
    calculate_padding,
    load_media_file,
)
class VideoService:
    def __init__(self):
        t0 = time.perf_counter()
        print("[DEBUG] Inicializando VideoService...")
        self.debug = os.getenv("LTXV_DEBUG", "1") == "1"
        self.frame_log_every = int(os.getenv("LTXV_FRAME_LOG_EVERY", "8"))
        self.config = self._load_config()
        print(f"[DEBUG] Config carregada (precision={self.config.get('precision')}, sampler={self.config.get('sampler')})")
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        print(f"[DEBUG] Device selecionado: {self.device}")
        self.last_memory_reserved_mb = 0.0
        self._tmp_dirs = set(); self._tmp_files = set(); self._last_outputs = []

        self.pipeline, self.latent_upsampler = self._load_models()
        print(f"[DEBUG] Pipeline e Upsampler carregados. Upsampler ativo? {bool(self.latent_upsampler)}")

        print(f"[DEBUG] Movendo modelos para {self.device}...")
        self.pipeline.to(self.device)
        if self.latent_upsampler:
            self.latent_upsampler.to(self.device)

        self._apply_precision_policy()
        print(f"[DEBUG] runtime_autocast_dtype = {getattr(self, 'runtime_autocast_dtype', None)}")

        vae_manager_singleton.attach_pipeline(
            self.pipeline,
            device=self.device,
            autocast_dtype=self.runtime_autocast_dtype
        )
        print(f"[DEBUG] VAE manager conectado: has_vae={hasattr(self.pipeline, 'vae')} device={self.device}")

        if self.device == "cuda":
            torch.cuda.empty_cache()
            self._log_gpu_memory("Após carregar modelos")

        print(f"[DEBUG] VideoService pronto. boot_time={time.perf_counter()-t0:.3f}s")

    def _log_gpu_memory(self, stage_name: str):
        if self.device != "cuda":
            return
        device_index = torch.cuda.current_device() if torch.cuda.is_available() else 0
        current_reserved_b = torch.cuda.memory_reserved(device_index)
        current_reserved_mb = current_reserved_b / (1024 ** 2)
        total_memory_b = torch.cuda.get_device_properties(device_index).total_memory
        total_memory_mb = total_memory_b / (1024 ** 2)
        peak_reserved_mb = torch.cuda.max_memory_reserved(device_index) / (1024 ** 2)
        delta_mb = current_reserved_mb - getattr(self, "last_memory_reserved_mb", 0.0)
        processes = _query_gpu_processes_via_nvml(device_index) or _query_gpu_processes_via_nvidiasmi(device_index)
        print(f"\n--- [LOG GPU] {stage_name} (cuda:{device_index}) ---")
        print(f"  - Reservado: {current_reserved_mb:.2f} MB / {total_memory_mb:.2f} MB  (Δ={delta_mb:+.2f} MB)")
        if peak_reserved_mb > getattr(self, "last_memory_reserved_mb", 0.0):
            print(f"  - Pico reservado (nesta fase): {peak_reserved_mb:.2f} MB")
        print(_gpu_process_table(processes, os.getpid()), end="")
        print("--------------------------------------------------\n")
        self.last_memory_reserved_mb = current_reserved_mb

    def _register_tmp_dir(self, d: str):
        if d and os.path.isdir(d):
            self._tmp_dirs.add(d); print(f"[DEBUG] Registrado tmp dir: {d}")

    def _register_tmp_file(self, f: str):
        if f and os.path.exists(f):
            self._tmp_files.add(f); print(f"[DEBUG] Registrado tmp file: {f}")

    def finalize(self, keep_paths=None, extra_paths=None, clear_gpu=True):
        print("[DEBUG] Finalize: iniciando limpeza...")
        keep = set(keep_paths or []); extras = set(extra_paths or [])
        removed_files = 0
        for f in list(self._tmp_files | extras):
            try:
                if f not in keep and os.path.isfile(f):
                    os.remove(f); removed_files += 1; print(f"[DEBUG] Removido arquivo tmp: {f}")
            except Exception as e:
                print(f"[DEBUG] Falha removendo arquivo {f}: {e}")
            finally:
                self._tmp_files.discard(f)
        removed_dirs = 0
        for d in list(self._tmp_dirs):
            try:
                if d not in keep and os.path.isdir(d):
                    shutil.rmtree(d, ignore_errors=True); removed_dirs += 1; print(f"[DEBUG] Removido diretório tmp: {d}")
            except Exception as e:
                print(f"[DEBUG] Falha removendo diretório {d}: {e}")
            finally:
                self._tmp_dirs.discard(d)
        print(f"[DEBUG] Finalize: arquivos removidos={removed_files}, dirs removidos={removed_dirs}")
        gc.collect()
        try:
            if clear_gpu and torch.cuda.is_available():
                torch.cuda.empty_cache()
                try:
                    torch.cuda.ipc_collect()
                except Exception:
                    pass
        except Exception as e:
            print(f"[DEBUG] Finalize: limpeza GPU falhou: {e}")
        try:
            self._log_gpu_memory("Após finalize")
        except Exception as e:
            print(f"[DEBUG] Log GPU pós-finalize falhou: {e}")

    def _load_config(self):
        base = LTX_VIDEO_REPO_DIR / "configs"
        candidates = [
            base / "ltxv-13b-0.9.8-dev-fp8.yaml",
            base / "ltxv-13b-0.9.8-distilled-fp8.yaml",
            base / "ltxv-13b-0.9.8-distilled.yaml",
        ]
        for cfg in candidates:
            if cfg.exists():
                print(f"[DEBUG] Config selecionada: {cfg}")
                with open(cfg, "r") as file:
                    return yaml.safe_load(file)
        cfg = base / "ltxv-13b-0.9.8-distilled-fp8.yaml"
        print(f"[DEBUG] Config fallback: {cfg}")
        with open(cfg, "r") as file:
            return yaml.safe_load(file)

    def _load_models(self):
        t0 = time.perf_counter()
        LTX_REPO = "Lightricks/LTX-Video"
        print("[DEBUG] Baixando checkpoint principal...")
        distilled_model_path = hf_hub_download(
            repo_id=LTX_REPO,
            filename=self.config["checkpoint_path"],
            local_dir=os.getenv("HF_HOME"),
            cache_dir=os.getenv("HF_HOME_CACHE"),
            token=os.getenv("HF_TOKEN"),
        )
        self.config["checkpoint_path"] = distilled_model_path
        print(f"[DEBUG] Checkpoint em: {distilled_model_path}")

        print("[DEBUG] Baixando upscaler espacial...")
        spatial_upscaler_path = hf_hub_download(
            repo_id=LTX_REPO,
            filename=self.config["spatial_upscaler_model_path"],
            local_dir=os.getenv("HF_HOME"),
            cache_dir=os.getenv("HF_HOME_CACHE"),
            token=os.getenv("HF_TOKEN")
        )
        self.config["spatial_upscaler_model_path"] = spatial_upscaler_path
        print(f"[DEBUG] Upscaler em: {spatial_upscaler_path}")

        print("[DEBUG] Construindo pipeline...")
        pipeline = create_ltx_video_pipeline(
            ckpt_path=self.config["checkpoint_path"],
            precision=self.config["precision"],
            text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
            sampler=self.config["sampler"],
            device="cpu",
            enhance_prompt=False,
            prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"],
            prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"],
        )
        print("[DEBUG] Pipeline pronto.")

        latent_upsampler = None
        if self.config.get("spatial_upscaler_model_path"):
            print("[DEBUG] Construindo latent_upsampler...")
            latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu")
            print("[DEBUG] Upsampler pronto.")
        print(f"[DEBUG] _load_models() tempo total={time.perf_counter()-t0:.3f}s")
        return pipeline, latent_upsampler

    def _promote_fp8_weights_to_bf16(self, module):
        if not isinstance(module, torch.nn.Module):
            print("[DEBUG] Promoção FP8→BF16 ignorada: alvo não é nn.Module.")
            return
        f8 = getattr(torch, "float8_e4m3fn", None)
        if f8 is None:
            print("[DEBUG] torch.float8_e4m3fn indisponível.")
            return
        p_cnt = b_cnt = 0
        for _, p in module.named_parameters(recurse=True):
            try:
                if p.dtype == f8:
                    with torch.no_grad():
                        p.data = p.data.to(torch.bfloat16); p_cnt += 1
            except Exception:
                pass
        for _, b in module.named_buffers(recurse=True):
            try:
                if hasattr(b, "dtype") and b.dtype == f8:
                    b.data = b.data.to(torch.bfloat16); b_cnt += 1
            except Exception:
                pass
        print(f"[DEBUG] FP8→BF16: params_promoted={p_cnt}, buffers_promoted={b_cnt}")

    @torch.no_grad()
    def _upsample_latents_internal(self, latents: torch.Tensor) -> torch.Tensor:
        if not self.latent_upsampler:
            raise ValueError("Latent Upsampler não está carregado.")
        self.latent_upsampler.to(self.device)
        self.pipeline.vae.to(self.device)
        print(f"[DEBUG-UPSAMPLE] Shape de entrada: {tuple(latents.shape)}")
        latents = un_normalize_latents(latents, self.pipeline.vae, vae_per_channel_normalize=True)
        upsampled_latents = self.latent_upsampler(latents)
        upsampled_latents = normalize_latents(upsampled_latents, self.pipeline.vae, vae_per_channel_normalize=True)
        print(f"[DEBUG-UPSAMPLE] Shape de saída: {tuple(upsampled_latents.shape)}")
        return upsampled_latents
        
    def _apply_precision_policy(self):
        prec = str(self.config.get("precision", "")).lower()
        self.runtime_autocast_dtype = torch.float32
        print(f"[DEBUG] Aplicando política de precisão: {prec}")
        if prec == "float8_e4m3fn":
            self.runtime_autocast_dtype = torch.bfloat16
            force_promote = os.getenv("LTXV_FORCE_BF16_ON_FP8", "0") == "1"
            print(f"[DEBUG] FP8 detectado. force_promote={force_promote}")
            if force_promote and hasattr(torch, "float8_e4m3fn"):
                try:
                    self._promote_fp8_weights_to_bf16(self.pipeline)
                except Exception as e:
                    print(f"[DEBUG] Promoção FP8→BF16 na pipeline falhou: {e}")
                try:
                    if self.latent_upsampler:
                        self._promote_fp8_weights_to_bf16(self.latent_upsampler)
                except Exception as e:
                    print(f"[DEBUG] Promoção FP8→BF16 no upsampler falhou: {e}")
        elif prec == "bfloat16":
            self.runtime_autocast_dtype = torch.bfloat16
        elif prec == "mixed_precision":
            self.runtime_autocast_dtype = torch.float16
        else:
            self.runtime_autocast_dtype = torch.float32

    def _prepare_conditioning_tensor(self, filepath, height, width, padding_values):
        print(f"[DEBUG] Carregando condicionamento: {filepath}")
        tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width)
        tensor = torch.nn.functional.pad(tensor, padding_values)
        out = tensor.to(self.device, dtype=self.runtime_autocast_dtype) if self.device == "cuda" else tensor.to(self.device)
        print(f"[DEBUG] Cond shape={tuple(out.shape)} dtype={out.dtype} device={out.device}")
        return out

    def _dividir_latentes_por_tamanho(self, latents_brutos, num_latente_por_chunk: int, overlap: int = 1):
        sum_latent = latents_brutos.shape[2]
        chunks = []
        if num_latente_por_chunk >= sum_latent:
            return [latents_brutos.clone().detach()] # CORREÇÃO: Retornar uma lista e clonar
        # CORREÇÃO: Lógica de chunking simplificada e corrigida para evitar estouro de índice
        start = 0
        while start < sum_latent:
            end = min(start + num_latente_por_chunk, sum_latent)
            # Para o overlap, pegamos um pouco do chunk anterior, exceto para o primeiro
            overlap_start = max(0, start - overlap)
            
            # O chunk a ser processado vai de `overlap_start` até `end`
            # mas o chunk "real" para junção posterior seria de `start` a `end`
            # A lógica atual já faz um overlap simples, vamos refinar
            effective_end = min(start + num_latente_por_chunk, sum_latent)
            chunk = latents_brutos[:, :, start:effective_end, :, :].clone().detach()
            
            # Adiciona overlap no final se não for o último chunk
            if effective_end < sum_latent:
                overlap_end = min(effective_end + overlap, sum_latent)
                chunk = latents_brutos[:, :, start:overlap_end, :, :].clone().detach()

            print(f"[DEBUG] Chunk: start={start}, end={chunk.shape[2]}, total_latents={sum_latent}")
            chunks.append(chunk)
            
            # Avança para o próximo chunk
            if start + num_latente_por_chunk >= sum_latent:
                break
            start += num_latente_por_chunk
            
        return chunks
   
    def _get_total_frames(self, video_path: str) -> int:
        cmd = [
            "ffprobe", "-v", "error", "-select_streams", "v:0", "-count_frames",
            "-show_entries", "stream=nb_read_frames", "-of", "default=nokey=1:noprint_wrappers=1", video_path
        ]
        result = subprocess.run(cmd, capture_output=True, text=True, check=True)
        return int(result.stdout.strip())    

    def _gerar_lista_com_transicoes(self, pasta: str, video_paths: list[str], crossfade_frames: int = 8) -> list[str]:
        # Esta função parece complexa e propensa a erros com nomes de arquivo.
        # Por segurança, mantendo a lógica original, mas corrigindo possíveis bugs de `shell=True`
        # e garantindo que os arquivos existam.
        if len(video_paths) <= 1:
            return video_paths # Não há o que fazer
            
        nova_lista_intermediaria = []
        # Primeiro, cria todos os vídeos podados
        videos_podados = []
        for i, base in enumerate(video_paths):
            video_podado = os.path.join(pasta, f"podado_{i}.mp4")
            total_frames = self._get_total_frames(base)
            
            start_frame = crossfade_frames if i > 0 else 0
            end_frame = total_frames - crossfade_frames if i < len(video_paths) - 1 else total_frames
            
            # Pular poda se não houver frames suficientes
            if start_frame >= end_frame:
                continue

            cmd = [
                'ffmpeg', '-y', '-hide_banner', '-loglevel', 'error', '-i', base,
                '-vf', f'trim=start_frame={start_frame}:end_frame={end_frame},setpts=PTS-STARTPTS',
                '-an', video_podado
            ]
            subprocess.run(cmd, check=True)
            videos_podados.append(video_podado)

        # Agora, cria as transições e monta a lista final
        lista_final = [videos_podados[0]]
        for i in range(len(video_paths) - 1):
            video_anterior = video_paths[i]
            video_seguinte = video_paths[i+1]
            
            # Extrai fade_fim do anterior
            fade_fim_path = os.path.join(pasta, f"fade_fim_{i}.mp4")
            total_frames_anterior = self._get_total_frames(video_anterior)
            cmd_fim = [
                'ffmpeg', '-y', '-hide_banner', '-loglevel', 'error', '-i', video_anterior,
                '-vf', f'trim=start_frame={total_frames_anterior - crossfade_frames},setpts=PTS-STARTPTS',
                '-an', fade_fim_path
            ]
            subprocess.run(cmd_fim, check=True)

            # Extrai fade_ini do seguinte
            fade_ini_path = os.path.join(pasta, f"fade_ini_{i+1}.mp4")
            cmd_ini = [
                'ffmpeg', '-y', '-hide_banner', '-loglevel', 'error', '-i', video_seguinte,
                '-vf', f'trim=end_frame={crossfade_frames},setpts=PTS-STARTPTS', '-an', fade_ini_path
            ]
            subprocess.run(cmd_ini, check=True)

            # Cria a transição
            transicao_path = os.path.join(pasta, f"transicao_{i}_{i+1}.mp4")
            cmd_blend = [
                'ffmpeg', '-y', '-hide_banner', '-loglevel', 'error',
                '-i', fade_fim_path, '-i', fade_ini_path,
                '-filter_complex', f'[0:v][1:v]blend=all_expr=\'A*(1-T/{crossfade_frames})+B*(T/{crossfade_frames})\',format=yuv420p',
                '-frames:v', str(crossfade_frames), transicao_path
            ]
            subprocess.run(cmd_blend, check=True)

            lista_final.append(transicao_path)
            lista_final.append(videos_podados[i+1])
            
        return lista_final
        
    def _concat_mp4s_no_reencode(self, mp4_list: List[str], out_path: str):
        if not mp4_list:
            raise ValueError("A lista de MP4s para concatenar está vazia.")
        # Se houver apenas um vídeo, apenas o copie/mova
        if len(mp4_list) == 1:
            shutil.move(mp4_list[0], out_path)
            print(f"[DEBUG] Apenas um vídeo, movido para: {out_path}")
            return
            
        with tempfile.NamedTemporaryFile("w", delete=False, suffix=".txt") as f:
            for mp4 in mp4_list:
                f.write(f"file '{os.path.abspath(mp4)}'\n")
            list_path = f.name
    
        cmd = f"ffmpeg -y -f concat -safe 0 -i {list_path} -c copy {out_path}"
        print(f"[DEBUG] Concat: {cmd}")
    
        try:
            subprocess.check_call(shlex.split(cmd))
        finally:
            try:
                os.remove(list_path)
            except Exception:
                pass   
   
    def generate(
        self,
        prompt,
        negative_prompt,
        mode="text-to-video",
        start_image_filepath=None,
        middle_image_filepath=None,
        middle_frame_number=None,
        middle_image_weight=1.0,
        end_image_filepath=None,
        end_image_weight=1.0,
        input_video_filepath=None,
        height=512,
        width=704,
        duration=2.0,
        frames_to_use=9, # Parâmetro não utilizado, mas mantido por consistência
        seed=42,
        randomize_seed=True,
        guidance_scale=3.0,
        improve_texture=True,
        progress_callback=None,
        external_decode=True, # Parâmetro não utilizado, mas mantido
    ):
        t_all = time.perf_counter()
        print(f"[DEBUG] generate() begin mode={mode} improve_texture={improve_texture}")
        if self.device == "cuda":
            torch.cuda.empty_cache(); torch.cuda.reset_peak_memory_stats()
        self._log_gpu_memory("Início da Geração")

        if mode == "image-to-video" and not start_image_filepath:
            raise ValueError("A imagem de início é obrigatória para o modo image-to-video")
        used_seed = random.randint(0, 2**32 - 1) if randomize_seed else int(seed)
        seed_everething(used_seed); print(f"[DEBUG] Seed usado: {used_seed}")
        FPS = 24.0; MAX_NUM_FRAMES = 2570
        target_frames_rounded = round(duration * FPS)
        n_val = round((float(target_frames_rounded) - 1.0) / 8.0)
        actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(n_val * 8 + 1)))
        height_padded = ((height - 1) // 8 + 1) * 8
        width_padded = ((width - 1) // 8 + 1) * 8
        padding_values = calculate_padding(height, width, height_padded, width_padded)
        generator = torch.Generator(device=self.device).manual_seed(used_seed)
        
        conditioning_items = []
        if mode == "image-to-video":
            start_tensor = self._prepare_conditioning_tensor(start_image_filepath, height, width, padding_values)
            conditioning_items.append(ConditioningItem(start_tensor, 0, 1.0))
            if middle_image_filepath and middle_frame_number is not None:
                middle_tensor = self._prepare_conditioning_tensor(middle_image_filepath, height, width, padding_values)
                safe_middle_frame = max(0, min(int(middle_frame_number), actual_num_frames - 1))
                conditioning_items.append(ConditioningItem(middle_tensor, safe_middle_frame, float(middle_image_weight)))
            if end_image_filepath:
                end_tensor = self._prepare_conditioning_tensor(end_image_filepath, height, width, padding_values)
                last_frame_index = actual_num_frames - 1
                conditioning_items.append(ConditioningItem(end_tensor, last_frame_index, float(end_image_weight)))
            print(f"[DEBUG] Conditioning items: {len(conditioning_items)}")

        call_kwargs = {
            "prompt": prompt, "negative_prompt": negative_prompt, "height": height_padded, "width": width_padded,
            "num_frames": actual_num_frames, "frame_rate": int(FPS), "generator": generator, "output_type": "latent",
            "conditioning_items": conditioning_items if conditioning_items else None, "media_items": None,
            "decode_timestep": self.config["decode_timestep"], "decode_noise_scale": self.config["decode_noise_scale"],
            "stochastic_sampling": self.config["stochastic_sampling"], "image_cond_noise_scale": 0.01, "is_video": True,
            "vae_per_channel_normalize": True, "mixed_precision": (self.config["precision"] == "mixed_precision"),
            "offload_to_cpu": False, "enhance_prompt": False, "skip_layer_strategy": SkipLayerStrategy.AttentionValues,
        }
        
        # CORREÇÃO: Inicialização de listas
        latents_list = []
        temp_dir = tempfile.mkdtemp(prefix="ltxv_"); self._register_tmp_dir(temp_dir)
        results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
            
        try:
            if improve_texture:
                ctx = torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype) if self.device == "cuda" else contextlib.nullcontext()
                with ctx:
                    if not self.latent_upsampler:
                        raise ValueError("Upscaler espacial não carregado, mas 'improve_texture' está ativo.")
                    
                    print("\n--- INICIANDO ETAPA 1: GERAÇÃO BASE (FIRST PASS) ---")
                    t_pass1 = time.perf_counter()
                    first_pass_config = self.config.get("first_pass", {}).copy()
                    first_pass_config.pop("num_inference_steps", None)
                    downscale_factor = self.config.get("downscale_factor", 0.6666666)
                    vae_scale_factor = self.pipeline.vae_scale_factor
                    x_width = int(width_padded * downscale_factor)
                    downscaled_width = x_width - (x_width % vae_scale_factor)
                    x_height = int(height_padded * downscale_factor)
                    downscaled_height = x_height - (x_height % vae_scale_factor)
                    print(f"[DEBUG] First Pass Dims: Original Pad ({width_padded}x{height_padded}) -> Downscaled ({downscaled_width}x{downscaled_height})")
                    
                    first_pass_kwargs = call_kwargs.copy()
                    first_pass_kwargs.update({
                        "output_type": "latent", "width": downscaled_width, "height": downscaled_height,
                        "guidance_scale": float(guidance_scale), **first_pass_config
                    })
                    
                    print(f"[DEBUG] First Pass: Gerando em {downscaled_width}x{downscaled_height}...")
                    # CORREÇÃO: Usar self.pipeline, não a variável deletada 'pipeline'
                    latents = self.pipeline(**first_pass_kwargs).images
                    log_tensor_info(latents, "Latentes Base (First Pass)")
                    print(f"[DEBUG] First Pass concluída em {time.perf_counter() - t_pass1:.2f}s")
                    
                with ctx:
                    print("\n--- INICIANDO ETAPA 2: UPSCALE DOS LATENTES ---")
                    t_upscale = time.perf_counter()
                    upsampled_latents = self._upsample_latents_internal(latents)
                    upsampled_latents = adain_filter_latent(latents=upsampled_latents, reference_latents=latents)
                    print(f"[DEBUG] Upscale de Latentes concluído em {time.perf_counter() - t_upscale:.2f}s")
                    
                    # CORREÇÃO: Manter latentes originais para AdaIN e passar latentes com upscale para o second pass
                    reference_latents_cpu = latents.detach().to("cpu", non_blocking=True)
                    latents_to_refine = upsampled_latents
                    del upsampled_latents; del latents; gc.collect(); torch.cuda.empty_cache()
                
                # CORREÇÃO: Lógica de chunking para o second pass
                latents_parts = self._dividir_latentes_por_tamanho(latents_to_refine, 32, 8) # Exemplo: chunks de 32 frames com 8 de overlap
                del latents_to_refine

                with ctx:
                    for i, latents_chunk in enumerate(latents_parts):
                        print(f"\n--- INICIANDO ETAPA 3.{i+1}: REFINAMENTO DE TEXTURA (SECOND PASS) ---")
                        # CORREÇÃO: AdaIN precisa de latents de referência com mesmo H/W, o que não é o caso aqui.
                        # Vamos aplicar AdaIN com o próprio chunk para normalização, ou pular. Pulando por simplicidade.
                        
                        second_pass_config = self.config.get("second_pass", {}).copy()
                        second_pass_config.pop("num_inference_steps", None)
                        
                        # O tamanho do second pass deve ser o tamanho do latente de entrada (após upscale)
                        second_pass_height, second_pass_width = latents_chunk.shape[3] * 8, latents_chunk.shape[4] * 8

                        print(f"[DEBUG] Second Pass Dims: Target ({second_pass_width}x{second_pass_height})")
                        t_pass2 = time.perf_counter()
                        second_pass_kwargs = call_kwargs.copy()
                        second_pass_kwargs.update({
                           "output_type": "latent", "width": second_pass_width, "height": second_pass_height,
                           "latents": latents_chunk.to(self.device), # Mover chunk para GPU
                           "guidance_scale": float(guidance_scale),
                           "num_frames": latents_chunk.shape[2], # Usar o número de frames do chunk
                           **second_pass_config
                        })
                        print(f"[DEBUG] Second Pass: Refinando chunk {i+1}/{len(latents_parts)}...")
                        final_latents = self.pipeline(**second_pass_kwargs).images
                        log_tensor_info(final_latents, "Latentes Finais (Pós-Second Pass)")
                        print(f"[DEBUG] Second part Pass concluída em {time.perf_counter() - t_pass2:.2f}s")
                        latents_cpu = final_latents.detach().to("cpu", non_blocking=True)
                        latents_list.append(latents_cpu)
                        del final_latents; del latents_chunk; gc.collect(); torch.cuda.empty_cache()
            else: 
                ctx = torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype) if self.device == "cuda" else contextlib.nullcontext()
                with ctx:    
                    print("\n--- INICIANDO GERAÇÃO DE ETAPA ÚNICA ---")
                    t_single = time.perf_counter()
                    single_pass_call_kwargs = call_kwargs.copy()
                    # CORREÇÃO: `pipeline_instance` não existe, usar `self.pipeline`.
                    latents_single_pass = self.pipeline(**single_pass_call_kwargs).images
                    log_tensor_info(latents_single_pass, "Latentes Finais (Etapa Única)")
                    print(f"[DEBUG] Etapa única concluída em {time.perf_counter() - t_single:.2f}s")
                    latents_cpu = latents_single_pass.detach().to("cpu", non_blocking=True)
                    latents_list.append(latents_cpu) # CORREÇÃO: aqui deve ser latents_cpu, não latents_single_pass
                    del latents_single_pass; gc.collect(); torch.cuda.empty_cache()

            # --- ETAPA FINAL: DECODIFICAÇÃO E CODIFICAÇÃO MP4 ---
            print("\n--- INICIANDO ETAPA FINAL: DECODIFICAÇÃO E MONTAGEM ---")
            partes_mp4 = []
            for i, latents in enumerate(latents_list):
                print(f"[DEBUG] Decodificando partição {i+1}/{len(latents_list)}: {tuple(latents.shape)}")
                output_video_path = os.path.join(temp_dir, f"output_{used_seed}_{i}.mp4")
                
                pixel_tensor = vae_manager_singleton.decode(
                    latents.to(self.device, non_blocking=True),
                    decode_timestep=float(self.config.get("decode_timestep", 0.05))
                )
                log_tensor_info(pixel_tensor, "Pixel tensor (VAE saída)")

                video_encode_tool_singleton.save_video_from_tensor(
                   pixel_tensor, output_video_path, fps=call_kwargs["frame_rate"], progress_callback=progress_callback
                )
                partes_mp4.append(output_video_path)
                del pixel_tensor; del latents; gc.collect(); torch.cuda.empty_cache()

            final_vid = os.path.join(results_dir, f"final_video_{used_seed}.mp4")
            if len(partes_mp4) > 1:
                # A função _gerar_lista_com_transicoes é complexa, usando uma concatenação direta como fallback robusto.
                # Para usar a transição, a lógica de overlap na divisão de latentes precisa ser perfeita.
                print("[DEBUG] Múltiplas partes geradas, concatenando...")
                partes_mp4_fade = self._gerar_lista_com_transicoes(pasta=temp_dir, video_paths=partes_mp4, crossfade_frames=8)
                self._concat_mp4s_no_reencode(partes_mp4_fade, final_vid)
            else:
                shutil.move(partes_mp4[0], final_vid)

            self._log_gpu_memory("Fim da Geração")
            return final_vid, used_seed
            
        except Exception as e:
            print("[DEBUG] EXCEÇÃO NA GERAÇÃO:")
            print("".join(traceback.format_exception(type(e), e, e.__traceback__)))
            raise
        
        finally:
            gc.collect()
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
                torch.cuda.ipc_collect()
            self.finalize(keep_paths=[]) # O resultado final já foi movido

print("Criando instância do VideoService. O carregamento do modelo começará agora...")
video_generation_service = VideoService()