Spaces:
Paused
Paused
File size: 38,439 Bytes
fd4abdb ab2fc5d fd4abdb 39769b3 fd4abdb 21e9173 fd4abdb 953982d fd4abdb 905c79b ab2fc5d 21e9173 ab2fc5d 21e9173 ab2fc5d fd4abdb bc04cfa 21e9173 bc04cfa 21e9173 bc04cfa 21e9173 bc04cfa 21e9173 bc04cfa 21e9173 bc04cfa 21e9173 bc04cfa 21e9173 bc04cfa 21e9173 fd4abdb ab2fc5d f736eae fd4abdb 7d27b48 ab2fc5d 6f8a8f1 ab2fc5d 6f8a8f1 ab2fc5d fd4abdb ab2fc5d fd4abdb b6a9c29 fd4abdb cedf791 fd4abdb 21e9173 fd4abdb 953982d fd4abdb 21e9173 fd4abdb 21e9173 fd4abdb 21e9173 fd4abdb 21e9173 fd4abdb 21e9173 ab2fc5d 21e9173 953982d 8ee3160 21e9173 fd4abdb 953982d fd4abdb 21e9173 fd4abdb 21e9173 fd4abdb 21e9173 fd4abdb bc04cfa fd4abdb 953982d fd4abdb 4ed8366 953982d fd4abdb 21e9173 fd4abdb 21e9173 35be4e2 fd4abdb 35be4e2 953982d 39769b3 953982d a638401 35be4e2 a638401 21e9173 a638401 35be4e2 39769b3 953982d 21e9173 953982d 21e9173 35be4e2 953982d 35be4e2 953982d 35be4e2 953982d 21e9173 35be4e2 21e9173 5577a09 35be4e2 21e9173 5577a09 39769b3 ab2fc5d 21e9173 ab2fc5d 21e9173 ab2fc5d 21e9173 5577a09 35be4e2 21e9173 35be4e2 953982d 35be4e2 21e9173 35be4e2 953982d 35be4e2 21e9173 35be4e2 953982d 21e9173 35be4e2 21e9173 ab2fc5d fd4abdb 21e9173 fd4abdb 4ed8366 fd4abdb 35be4e2 fd4abdb 21e9173 fd4abdb 4ed8366 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 |
# ltx_server.py — VideoService (beta 1.1)
# Sempre output_type="latent"; no final: VAE (bloco inteiro) → pixels → MP4.
# Ignora UserWarning/FutureWarning e injeta VAE no manager com dtype/device corretos.
# --- 0. WARNINGS E AMBIENTE ---
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", message=".*")
from huggingface_hub import logging
logging.set_verbosity_error()
logging.set_verbosity_warning()
logging.set_verbosity_info()
logging.set_verbosity_debug()
LTXV_DEBUG=1
LTXV_FRAME_LOG_EVERY=8
import os, subprocess, shlex, tempfile
import torch
import json
import numpy as np
import random
import os
import shlex
import yaml
from typing import List, Dict
from pathlib import Path
import imageio
from PIL import Image # Import adicionado para handle_media_upload_for_dims
import tempfile
from huggingface_hub import hf_hub_download
import sys
import subprocess
import gc
import shutil
import contextlib
import time
import traceback
from einops import rearrange
import torch.nn.functional as F
from managers.vae_manager import vae_manager_singleton
from tools.video_encode_tool import video_encode_tool_singleton
DEPS_DIR = Path("/data")
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
# CORREÇÃO: Movido run_setup para o início para garantir que seja definido antes de ser chamado.
def run_setup():
setup_script_path = "setup.py"
if not os.path.exists(setup_script_path):
print("[DEBUG] 'setup.py' não encontrado. Pulando clonagem de dependências.")
return
try:
print("[DEBUG] Executando setup.py para dependências...")
subprocess.run([sys.executable, setup_script_path], check=True)
print("[DEBUG] Setup concluído com sucesso.")
except subprocess.CalledProcessError as e:
print(f"[DEBUG] ERRO no setup.py (code {e.returncode}). Abortando.")
sys.exit(1)
if not LTX_VIDEO_REPO_DIR.exists():
print(f"[DEBUG] Repositório não encontrado em {LTX_VIDEO_REPO_DIR}. Rodando setup...")
run_setup()
def add_deps_to_path():
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path:
sys.path.insert(0, repo_path)
print(f"[DEBUG] Repo adicionado ao sys.path: {repo_path}")
def _query_gpu_processes_via_nvml(device_index: int) -> List[Dict]:
try:
import psutil
import pynvml as nvml
nvml.nvmlInit()
handle = nvml.nvmlDeviceGetHandleByIndex(device_index)
try:
procs = nvml.nvmlDeviceGetComputeRunningProcesses_v3(handle)
except Exception:
procs = nvml.nvmlDeviceGetComputeRunningProcesses(handle)
results = []
for p in procs:
pid = int(p.pid)
used_mb = None
try:
if getattr(p, "usedGpuMemory", None) is not None and p.usedGpuMemory not in (0,):
used_mb = max(0, int(p.usedGpuMemory) // (1024 * 1024))
except Exception:
used_mb = None
name = "unknown"
user = "unknown"
try:
import psutil
pr = psutil.Process(pid)
name = pr.name()
user = pr.username()
except Exception:
pass
results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb})
nvml.nvmlShutdown()
return results
except Exception:
return []
def _query_gpu_processes_via_nvidiasmi(device_index: int) -> List[Dict]:
cmd = f"nvidia-smi -i {device_index} --query-compute-apps=pid,process_name,used_memory --format=csv,noheader,nounits"
try:
out = subprocess.check_output(shlex.split(cmd), stderr=subprocess.STDOUT, text=True, timeout=2.0)
except Exception:
return []
results = []
for line in out.strip().splitlines():
parts = [p.strip() for p in line.split(",")]
if len(parts) >= 3:
try:
pid = int(parts[0]); name = parts[1]; used_mb = int(parts[2])
user = "unknown"
try:
import psutil
pr = psutil.Process(pid)
user = pr.username()
except Exception:
pass
results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb})
except Exception:
continue
return results
def calculate_new_dimensions(orig_w, orig_h, divisor=8):
if orig_w == 0 or orig_h == 0:
return 512, 512
if orig_w >= orig_h:
aspect_ratio = orig_w / orig_h
new_h = 512
new_w = new_h * aspect_ratio
else:
aspect_ratio = orig_h / orig_w
new_w = 512
new_h = new_w * aspect_ratio
final_w = int(round(new_w / divisor)) * divisor
final_h = int(round(new_h / divisor)) * divisor
final_w = max(divisor, final_w)
final_h = max(divisor, final_h)
print(f"[Dimension Calc] Original: {orig_w}x{orig_h} -> Calculado: {new_w:.0f}x{new_h:.0f} -> Final (divisível por {divisor}): {final_w}x{final_h}")
return final_h, final_w
def handle_media_upload_for_dims(filepath, current_h, current_w):
# CORREÇÃO: Gradio (`gr`) não deve ser usado no backend. Retornando tupla diretamente.
if not filepath or not os.path.exists(str(filepath)):
return current_h, current_w
try:
if str(filepath).lower().endswith(('.png', '.jpg', '.jpeg', '.webp')):
with Image.open(filepath) as img:
orig_w, orig_h = img.size
else:
with imageio.get_reader(filepath) as reader:
meta = reader.get_meta_data()
orig_w, orig_h = meta.get('size', (current_w, current_h))
new_h, new_w = calculate_new_dimensions(orig_w, orig_h)
return new_h, new_w
except Exception as e:
print(f"Erro ao processar mídia para dimensões: {e}")
return current_h, current_w
def _gpu_process_table(processes: List[Dict], current_pid: int) -> str:
if not processes:
return " - Processos ativos: (nenhum)\n"
processes = sorted(processes, key=lambda x: (x.get("used_mb") or 0), reverse=True)
lines = [" - Processos ativos (PID | USER | NAME | VRAM MB):"]
for p in processes:
star = "*" if p["pid"] == current_pid else " "
used_str = str(p["used_mb"]) if p.get("used_mb") is not None else "N/A"
lines.append(f" {star} {p['pid']} | {p['user']} | {p['name']} | {used_str}")
return "\n".join(lines) + "\n"
def log_tensor_info(tensor, name="Tensor"):
if not isinstance(tensor, torch.Tensor):
print(f"\n[INFO] '{name}' não é tensor.")
return
print(f"\n--- Tensor: {name} ---")
print(f" - Shape: {tuple(tensor.shape)}")
print(f" - Dtype: {tensor.dtype}")
print(f" - Device: {tensor.device}")
if tensor.numel() > 0:
try:
print(f" - Min: {tensor.min().item():.4f} Max: {tensor.max().item():.4f} Mean: {tensor.mean().item():.4f}")
except Exception:
pass
print("------------------------------------------\n")
add_deps_to_path()
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
from ltx_video.models.autoencoders.vae_encode import un_normalize_latents, normalize_latents
from ltx_video.pipelines.pipeline_ltx_video import adain_filter_latent
from api.ltx.inference import (
create_ltx_video_pipeline,
create_latent_upsampler,
load_image_to_tensor_with_resize_and_crop,
seed_everething,
calculate_padding,
load_media_file,
)
class VideoService:
def __init__(self):
t0 = time.perf_counter()
print("[DEBUG] Inicializando VideoService...")
self.debug = os.getenv("LTXV_DEBUG", "1") == "1"
self.frame_log_every = int(os.getenv("LTXV_FRAME_LOG_EVERY", "8"))
self.config = self._load_config()
print(f"[DEBUG] Config carregada (precision={self.config.get('precision')}, sampler={self.config.get('sampler')})")
self.device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"[DEBUG] Device selecionado: {self.device}")
self.last_memory_reserved_mb = 0.0
self._tmp_dirs = set(); self._tmp_files = set(); self._last_outputs = []
self.pipeline, self.latent_upsampler = self._load_models()
print(f"[DEBUG] Pipeline e Upsampler carregados. Upsampler ativo? {bool(self.latent_upsampler)}")
print(f"[DEBUG] Movendo modelos para {self.device}...")
self.pipeline.to(self.device)
if self.latent_upsampler:
self.latent_upsampler.to(self.device)
self._apply_precision_policy()
print(f"[DEBUG] runtime_autocast_dtype = {getattr(self, 'runtime_autocast_dtype', None)}")
vae_manager_singleton.attach_pipeline(
self.pipeline,
device=self.device,
autocast_dtype=self.runtime_autocast_dtype
)
print(f"[DEBUG] VAE manager conectado: has_vae={hasattr(self.pipeline, 'vae')} device={self.device}")
if self.device == "cuda":
torch.cuda.empty_cache()
self._log_gpu_memory("Após carregar modelos")
print(f"[DEBUG] VideoService pronto. boot_time={time.perf_counter()-t0:.3f}s")
def _log_gpu_memory(self, stage_name: str):
if self.device != "cuda":
return
device_index = torch.cuda.current_device() if torch.cuda.is_available() else 0
current_reserved_b = torch.cuda.memory_reserved(device_index)
current_reserved_mb = current_reserved_b / (1024 ** 2)
total_memory_b = torch.cuda.get_device_properties(device_index).total_memory
total_memory_mb = total_memory_b / (1024 ** 2)
peak_reserved_mb = torch.cuda.max_memory_reserved(device_index) / (1024 ** 2)
delta_mb = current_reserved_mb - getattr(self, "last_memory_reserved_mb", 0.0)
processes = _query_gpu_processes_via_nvml(device_index) or _query_gpu_processes_via_nvidiasmi(device_index)
print(f"\n--- [LOG GPU] {stage_name} (cuda:{device_index}) ---")
print(f" - Reservado: {current_reserved_mb:.2f} MB / {total_memory_mb:.2f} MB (Δ={delta_mb:+.2f} MB)")
if peak_reserved_mb > getattr(self, "last_memory_reserved_mb", 0.0):
print(f" - Pico reservado (nesta fase): {peak_reserved_mb:.2f} MB")
print(_gpu_process_table(processes, os.getpid()), end="")
print("--------------------------------------------------\n")
self.last_memory_reserved_mb = current_reserved_mb
def _register_tmp_dir(self, d: str):
if d and os.path.isdir(d):
self._tmp_dirs.add(d); print(f"[DEBUG] Registrado tmp dir: {d}")
def _register_tmp_file(self, f: str):
if f and os.path.exists(f):
self._tmp_files.add(f); print(f"[DEBUG] Registrado tmp file: {f}")
def finalize(self, keep_paths=None, extra_paths=None, clear_gpu=True):
print("[DEBUG] Finalize: iniciando limpeza...")
keep = set(keep_paths or []); extras = set(extra_paths or [])
removed_files = 0
for f in list(self._tmp_files | extras):
try:
if f not in keep and os.path.isfile(f):
os.remove(f); removed_files += 1; print(f"[DEBUG] Removido arquivo tmp: {f}")
except Exception as e:
print(f"[DEBUG] Falha removendo arquivo {f}: {e}")
finally:
self._tmp_files.discard(f)
removed_dirs = 0
for d in list(self._tmp_dirs):
try:
if d not in keep and os.path.isdir(d):
shutil.rmtree(d, ignore_errors=True); removed_dirs += 1; print(f"[DEBUG] Removido diretório tmp: {d}")
except Exception as e:
print(f"[DEBUG] Falha removendo diretório {d}: {e}")
finally:
self._tmp_dirs.discard(d)
print(f"[DEBUG] Finalize: arquivos removidos={removed_files}, dirs removidos={removed_dirs}")
gc.collect()
try:
if clear_gpu and torch.cuda.is_available():
torch.cuda.empty_cache()
try:
torch.cuda.ipc_collect()
except Exception:
pass
except Exception as e:
print(f"[DEBUG] Finalize: limpeza GPU falhou: {e}")
try:
self._log_gpu_memory("Após finalize")
except Exception as e:
print(f"[DEBUG] Log GPU pós-finalize falhou: {e}")
def _load_config(self):
base = LTX_VIDEO_REPO_DIR / "configs"
candidates = [
base / "ltxv-13b-0.9.8-dev-fp8.yaml",
base / "ltxv-13b-0.9.8-distilled-fp8.yaml",
base / "ltxv-13b-0.9.8-distilled.yaml",
]
for cfg in candidates:
if cfg.exists():
print(f"[DEBUG] Config selecionada: {cfg}")
with open(cfg, "r") as file:
return yaml.safe_load(file)
cfg = base / "ltxv-13b-0.9.8-distilled-fp8.yaml"
print(f"[DEBUG] Config fallback: {cfg}")
with open(cfg, "r") as file:
return yaml.safe_load(file)
def _load_models(self):
t0 = time.perf_counter()
LTX_REPO = "Lightricks/LTX-Video"
print("[DEBUG] Baixando checkpoint principal...")
distilled_model_path = hf_hub_download(
repo_id=LTX_REPO,
filename=self.config["checkpoint_path"],
local_dir=os.getenv("HF_HOME"),
cache_dir=os.getenv("HF_HOME_CACHE"),
token=os.getenv("HF_TOKEN"),
)
self.config["checkpoint_path"] = distilled_model_path
print(f"[DEBUG] Checkpoint em: {distilled_model_path}")
print("[DEBUG] Baixando upscaler espacial...")
spatial_upscaler_path = hf_hub_download(
repo_id=LTX_REPO,
filename=self.config["spatial_upscaler_model_path"],
local_dir=os.getenv("HF_HOME"),
cache_dir=os.getenv("HF_HOME_CACHE"),
token=os.getenv("HF_TOKEN")
)
self.config["spatial_upscaler_model_path"] = spatial_upscaler_path
print(f"[DEBUG] Upscaler em: {spatial_upscaler_path}")
print("[DEBUG] Construindo pipeline...")
pipeline = create_ltx_video_pipeline(
ckpt_path=self.config["checkpoint_path"],
precision=self.config["precision"],
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
sampler=self.config["sampler"],
device="cpu",
enhance_prompt=False,
prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"],
prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"],
)
print("[DEBUG] Pipeline pronto.")
latent_upsampler = None
if self.config.get("spatial_upscaler_model_path"):
print("[DEBUG] Construindo latent_upsampler...")
latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu")
print("[DEBUG] Upsampler pronto.")
print(f"[DEBUG] _load_models() tempo total={time.perf_counter()-t0:.3f}s")
return pipeline, latent_upsampler
def _promote_fp8_weights_to_bf16(self, module):
if not isinstance(module, torch.nn.Module):
print("[DEBUG] Promoção FP8→BF16 ignorada: alvo não é nn.Module.")
return
f8 = getattr(torch, "float8_e4m3fn", None)
if f8 is None:
print("[DEBUG] torch.float8_e4m3fn indisponível.")
return
p_cnt = b_cnt = 0
for _, p in module.named_parameters(recurse=True):
try:
if p.dtype == f8:
with torch.no_grad():
p.data = p.data.to(torch.bfloat16); p_cnt += 1
except Exception:
pass
for _, b in module.named_buffers(recurse=True):
try:
if hasattr(b, "dtype") and b.dtype == f8:
b.data = b.data.to(torch.bfloat16); b_cnt += 1
except Exception:
pass
print(f"[DEBUG] FP8→BF16: params_promoted={p_cnt}, buffers_promoted={b_cnt}")
@torch.no_grad()
def _upsample_latents_internal(self, latents: torch.Tensor) -> torch.Tensor:
if not self.latent_upsampler:
raise ValueError("Latent Upsampler não está carregado.")
self.latent_upsampler.to(self.device)
self.pipeline.vae.to(self.device)
print(f"[DEBUG-UPSAMPLE] Shape de entrada: {tuple(latents.shape)}")
latents = un_normalize_latents(latents, self.pipeline.vae, vae_per_channel_normalize=True)
upsampled_latents = self.latent_upsampler(latents)
upsampled_latents = normalize_latents(upsampled_latents, self.pipeline.vae, vae_per_channel_normalize=True)
print(f"[DEBUG-UPSAMPLE] Shape de saída: {tuple(upsampled_latents.shape)}")
return upsampled_latents
def _apply_precision_policy(self):
prec = str(self.config.get("precision", "")).lower()
self.runtime_autocast_dtype = torch.float32
print(f"[DEBUG] Aplicando política de precisão: {prec}")
if prec == "float8_e4m3fn":
self.runtime_autocast_dtype = torch.bfloat16
force_promote = os.getenv("LTXV_FORCE_BF16_ON_FP8", "0") == "1"
print(f"[DEBUG] FP8 detectado. force_promote={force_promote}")
if force_promote and hasattr(torch, "float8_e4m3fn"):
try:
self._promote_fp8_weights_to_bf16(self.pipeline)
except Exception as e:
print(f"[DEBUG] Promoção FP8→BF16 na pipeline falhou: {e}")
try:
if self.latent_upsampler:
self._promote_fp8_weights_to_bf16(self.latent_upsampler)
except Exception as e:
print(f"[DEBUG] Promoção FP8→BF16 no upsampler falhou: {e}")
elif prec == "bfloat16":
self.runtime_autocast_dtype = torch.bfloat16
elif prec == "mixed_precision":
self.runtime_autocast_dtype = torch.float16
else:
self.runtime_autocast_dtype = torch.float32
def _prepare_conditioning_tensor(self, filepath, height, width, padding_values):
print(f"[DEBUG] Carregando condicionamento: {filepath}")
tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width)
tensor = torch.nn.functional.pad(tensor, padding_values)
out = tensor.to(self.device, dtype=self.runtime_autocast_dtype) if self.device == "cuda" else tensor.to(self.device)
print(f"[DEBUG] Cond shape={tuple(out.shape)} dtype={out.dtype} device={out.device}")
return out
def _dividir_latentes_por_tamanho(self, latents_brutos, num_latente_por_chunk: int, overlap: int = 1):
sum_latent = latents_brutos.shape[2]
chunks = []
if num_latente_por_chunk >= sum_latent:
return [latents_brutos.clone().detach()] # CORREÇÃO: Retornar uma lista e clonar
# CORREÇÃO: Lógica de chunking simplificada e corrigida para evitar estouro de índice
start = 0
while start < sum_latent:
end = min(start + num_latente_por_chunk, sum_latent)
# Para o overlap, pegamos um pouco do chunk anterior, exceto para o primeiro
overlap_start = max(0, start - overlap)
# O chunk a ser processado vai de `overlap_start` até `end`
# mas o chunk "real" para junção posterior seria de `start` a `end`
# A lógica atual já faz um overlap simples, vamos refinar
effective_end = min(start + num_latente_por_chunk, sum_latent)
chunk = latents_brutos[:, :, start:effective_end, :, :].clone().detach()
# Adiciona overlap no final se não for o último chunk
if effective_end < sum_latent:
overlap_end = min(effective_end + overlap, sum_latent)
chunk = latents_brutos[:, :, start:overlap_end, :, :].clone().detach()
print(f"[DEBUG] Chunk: start={start}, end={chunk.shape[2]}, total_latents={sum_latent}")
chunks.append(chunk)
# Avança para o próximo chunk
if start + num_latente_por_chunk >= sum_latent:
break
start += num_latente_por_chunk
return chunks
def _get_total_frames(self, video_path: str) -> int:
cmd = [
"ffprobe", "-v", "error", "-select_streams", "v:0", "-count_frames",
"-show_entries", "stream=nb_read_frames", "-of", "default=nokey=1:noprint_wrappers=1", video_path
]
result = subprocess.run(cmd, capture_output=True, text=True, check=True)
return int(result.stdout.strip())
def _gerar_lista_com_transicoes(self, pasta: str, video_paths: list[str], crossfade_frames: int = 8) -> list[str]:
# Esta função parece complexa e propensa a erros com nomes de arquivo.
# Por segurança, mantendo a lógica original, mas corrigindo possíveis bugs de `shell=True`
# e garantindo que os arquivos existam.
if len(video_paths) <= 1:
return video_paths # Não há o que fazer
nova_lista_intermediaria = []
# Primeiro, cria todos os vídeos podados
videos_podados = []
for i, base in enumerate(video_paths):
video_podado = os.path.join(pasta, f"podado_{i}.mp4")
total_frames = self._get_total_frames(base)
start_frame = crossfade_frames if i > 0 else 0
end_frame = total_frames - crossfade_frames if i < len(video_paths) - 1 else total_frames
# Pular poda se não houver frames suficientes
if start_frame >= end_frame:
continue
cmd = [
'ffmpeg', '-y', '-hide_banner', '-loglevel', 'error', '-i', base,
'-vf', f'trim=start_frame={start_frame}:end_frame={end_frame},setpts=PTS-STARTPTS',
'-an', video_podado
]
subprocess.run(cmd, check=True)
videos_podados.append(video_podado)
# Agora, cria as transições e monta a lista final
lista_final = [videos_podados[0]]
for i in range(len(video_paths) - 1):
video_anterior = video_paths[i]
video_seguinte = video_paths[i+1]
# Extrai fade_fim do anterior
fade_fim_path = os.path.join(pasta, f"fade_fim_{i}.mp4")
total_frames_anterior = self._get_total_frames(video_anterior)
cmd_fim = [
'ffmpeg', '-y', '-hide_banner', '-loglevel', 'error', '-i', video_anterior,
'-vf', f'trim=start_frame={total_frames_anterior - crossfade_frames},setpts=PTS-STARTPTS',
'-an', fade_fim_path
]
subprocess.run(cmd_fim, check=True)
# Extrai fade_ini do seguinte
fade_ini_path = os.path.join(pasta, f"fade_ini_{i+1}.mp4")
cmd_ini = [
'ffmpeg', '-y', '-hide_banner', '-loglevel', 'error', '-i', video_seguinte,
'-vf', f'trim=end_frame={crossfade_frames},setpts=PTS-STARTPTS', '-an', fade_ini_path
]
subprocess.run(cmd_ini, check=True)
# Cria a transição
transicao_path = os.path.join(pasta, f"transicao_{i}_{i+1}.mp4")
cmd_blend = [
'ffmpeg', '-y', '-hide_banner', '-loglevel', 'error',
'-i', fade_fim_path, '-i', fade_ini_path,
'-filter_complex', f'[0:v][1:v]blend=all_expr=\'A*(1-T/{crossfade_frames})+B*(T/{crossfade_frames})\',format=yuv420p',
'-frames:v', str(crossfade_frames), transicao_path
]
subprocess.run(cmd_blend, check=True)
lista_final.append(transicao_path)
lista_final.append(videos_podados[i+1])
return lista_final
def _concat_mp4s_no_reencode(self, mp4_list: List[str], out_path: str):
if not mp4_list:
raise ValueError("A lista de MP4s para concatenar está vazia.")
# Se houver apenas um vídeo, apenas o copie/mova
if len(mp4_list) == 1:
shutil.move(mp4_list[0], out_path)
print(f"[DEBUG] Apenas um vídeo, movido para: {out_path}")
return
with tempfile.NamedTemporaryFile("w", delete=False, suffix=".txt") as f:
for mp4 in mp4_list:
f.write(f"file '{os.path.abspath(mp4)}'\n")
list_path = f.name
cmd = f"ffmpeg -y -f concat -safe 0 -i {list_path} -c copy {out_path}"
print(f"[DEBUG] Concat: {cmd}")
try:
subprocess.check_call(shlex.split(cmd))
finally:
try:
os.remove(list_path)
except Exception:
pass
def generate(
self,
prompt,
negative_prompt,
mode="text-to-video",
start_image_filepath=None,
middle_image_filepath=None,
middle_frame_number=None,
middle_image_weight=1.0,
end_image_filepath=None,
end_image_weight=1.0,
input_video_filepath=None,
height=512,
width=704,
duration=2.0,
frames_to_use=9, # Parâmetro não utilizado, mas mantido por consistência
seed=42,
randomize_seed=True,
guidance_scale=3.0,
improve_texture=True,
progress_callback=None,
external_decode=True, # Parâmetro não utilizado, mas mantido
):
t_all = time.perf_counter()
print(f"[DEBUG] generate() begin mode={mode} improve_texture={improve_texture}")
if self.device == "cuda":
torch.cuda.empty_cache(); torch.cuda.reset_peak_memory_stats()
self._log_gpu_memory("Início da Geração")
if mode == "image-to-video" and not start_image_filepath:
raise ValueError("A imagem de início é obrigatória para o modo image-to-video")
used_seed = random.randint(0, 2**32 - 1) if randomize_seed else int(seed)
seed_everething(used_seed); print(f"[DEBUG] Seed usado: {used_seed}")
FPS = 24.0; MAX_NUM_FRAMES = 2570
target_frames_rounded = round(duration * FPS)
n_val = round((float(target_frames_rounded) - 1.0) / 8.0)
actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(n_val * 8 + 1)))
height_padded = ((height - 1) // 8 + 1) * 8
width_padded = ((width - 1) // 8 + 1) * 8
padding_values = calculate_padding(height, width, height_padded, width_padded)
generator = torch.Generator(device=self.device).manual_seed(used_seed)
conditioning_items = []
if mode == "image-to-video":
start_tensor = self._prepare_conditioning_tensor(start_image_filepath, height, width, padding_values)
conditioning_items.append(ConditioningItem(start_tensor, 0, 1.0))
if middle_image_filepath and middle_frame_number is not None:
middle_tensor = self._prepare_conditioning_tensor(middle_image_filepath, height, width, padding_values)
safe_middle_frame = max(0, min(int(middle_frame_number), actual_num_frames - 1))
conditioning_items.append(ConditioningItem(middle_tensor, safe_middle_frame, float(middle_image_weight)))
if end_image_filepath:
end_tensor = self._prepare_conditioning_tensor(end_image_filepath, height, width, padding_values)
last_frame_index = actual_num_frames - 1
conditioning_items.append(ConditioningItem(end_tensor, last_frame_index, float(end_image_weight)))
print(f"[DEBUG] Conditioning items: {len(conditioning_items)}")
call_kwargs = {
"prompt": prompt, "negative_prompt": negative_prompt, "height": height_padded, "width": width_padded,
"num_frames": actual_num_frames, "frame_rate": int(FPS), "generator": generator, "output_type": "latent",
"conditioning_items": conditioning_items if conditioning_items else None, "media_items": None,
"decode_timestep": self.config["decode_timestep"], "decode_noise_scale": self.config["decode_noise_scale"],
"stochastic_sampling": self.config["stochastic_sampling"], "image_cond_noise_scale": 0.01, "is_video": True,
"vae_per_channel_normalize": True, "mixed_precision": (self.config["precision"] == "mixed_precision"),
"offload_to_cpu": False, "enhance_prompt": False, "skip_layer_strategy": SkipLayerStrategy.AttentionValues,
}
# CORREÇÃO: Inicialização de listas
latents_list = []
temp_dir = tempfile.mkdtemp(prefix="ltxv_"); self._register_tmp_dir(temp_dir)
results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
try:
if improve_texture:
ctx = torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype) if self.device == "cuda" else contextlib.nullcontext()
with ctx:
if not self.latent_upsampler:
raise ValueError("Upscaler espacial não carregado, mas 'improve_texture' está ativo.")
print("\n--- INICIANDO ETAPA 1: GERAÇÃO BASE (FIRST PASS) ---")
t_pass1 = time.perf_counter()
first_pass_config = self.config.get("first_pass", {}).copy()
first_pass_config.pop("num_inference_steps", None)
downscale_factor = self.config.get("downscale_factor", 0.6666666)
vae_scale_factor = self.pipeline.vae_scale_factor
x_width = int(width_padded * downscale_factor)
downscaled_width = x_width - (x_width % vae_scale_factor)
x_height = int(height_padded * downscale_factor)
downscaled_height = x_height - (x_height % vae_scale_factor)
print(f"[DEBUG] First Pass Dims: Original Pad ({width_padded}x{height_padded}) -> Downscaled ({downscaled_width}x{downscaled_height})")
first_pass_kwargs = call_kwargs.copy()
first_pass_kwargs.update({
"output_type": "latent", "width": downscaled_width, "height": downscaled_height,
"guidance_scale": float(guidance_scale), **first_pass_config
})
print(f"[DEBUG] First Pass: Gerando em {downscaled_width}x{downscaled_height}...")
# CORREÇÃO: Usar self.pipeline, não a variável deletada 'pipeline'
latents = self.pipeline(**first_pass_kwargs).images
log_tensor_info(latents, "Latentes Base (First Pass)")
print(f"[DEBUG] First Pass concluída em {time.perf_counter() - t_pass1:.2f}s")
with ctx:
print("\n--- INICIANDO ETAPA 2: UPSCALE DOS LATENTES ---")
t_upscale = time.perf_counter()
upsampled_latents = self._upsample_latents_internal(latents)
upsampled_latents = adain_filter_latent(latents=upsampled_latents, reference_latents=latents)
print(f"[DEBUG] Upscale de Latentes concluído em {time.perf_counter() - t_upscale:.2f}s")
# CORREÇÃO: Manter latentes originais para AdaIN e passar latentes com upscale para o second pass
reference_latents_cpu = latents.detach().to("cpu", non_blocking=True)
latents_to_refine = upsampled_latents
del upsampled_latents; del latents; gc.collect(); torch.cuda.empty_cache()
# CORREÇÃO: Lógica de chunking para o second pass
latents_parts = self._dividir_latentes_por_tamanho(latents_to_refine, 32, 8) # Exemplo: chunks de 32 frames com 8 de overlap
del latents_to_refine
with ctx:
for i, latents_chunk in enumerate(latents_parts):
print(f"\n--- INICIANDO ETAPA 3.{i+1}: REFINAMENTO DE TEXTURA (SECOND PASS) ---")
# CORREÇÃO: AdaIN precisa de latents de referência com mesmo H/W, o que não é o caso aqui.
# Vamos aplicar AdaIN com o próprio chunk para normalização, ou pular. Pulando por simplicidade.
second_pass_config = self.config.get("second_pass", {}).copy()
second_pass_config.pop("num_inference_steps", None)
# O tamanho do second pass deve ser o tamanho do latente de entrada (após upscale)
second_pass_height, second_pass_width = latents_chunk.shape[3] * 8, latents_chunk.shape[4] * 8
print(f"[DEBUG] Second Pass Dims: Target ({second_pass_width}x{second_pass_height})")
t_pass2 = time.perf_counter()
second_pass_kwargs = call_kwargs.copy()
second_pass_kwargs.update({
"output_type": "latent", "width": second_pass_width, "height": second_pass_height,
"latents": latents_chunk.to(self.device), # Mover chunk para GPU
"guidance_scale": float(guidance_scale),
"num_frames": latents_chunk.shape[2], # Usar o número de frames do chunk
**second_pass_config
})
print(f"[DEBUG] Second Pass: Refinando chunk {i+1}/{len(latents_parts)}...")
final_latents = self.pipeline(**second_pass_kwargs).images
log_tensor_info(final_latents, "Latentes Finais (Pós-Second Pass)")
print(f"[DEBUG] Second part Pass concluída em {time.perf_counter() - t_pass2:.2f}s")
latents_cpu = final_latents.detach().to("cpu", non_blocking=True)
latents_list.append(latents_cpu)
del final_latents; del latents_chunk; gc.collect(); torch.cuda.empty_cache()
else:
ctx = torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype) if self.device == "cuda" else contextlib.nullcontext()
with ctx:
print("\n--- INICIANDO GERAÇÃO DE ETAPA ÚNICA ---")
t_single = time.perf_counter()
single_pass_call_kwargs = call_kwargs.copy()
# CORREÇÃO: `pipeline_instance` não existe, usar `self.pipeline`.
latents_single_pass = self.pipeline(**single_pass_call_kwargs).images
log_tensor_info(latents_single_pass, "Latentes Finais (Etapa Única)")
print(f"[DEBUG] Etapa única concluída em {time.perf_counter() - t_single:.2f}s")
latents_cpu = latents_single_pass.detach().to("cpu", non_blocking=True)
latents_list.append(latents_cpu) # CORREÇÃO: aqui deve ser latents_cpu, não latents_single_pass
del latents_single_pass; gc.collect(); torch.cuda.empty_cache()
# --- ETAPA FINAL: DECODIFICAÇÃO E CODIFICAÇÃO MP4 ---
print("\n--- INICIANDO ETAPA FINAL: DECODIFICAÇÃO E MONTAGEM ---")
partes_mp4 = []
for i, latents in enumerate(latents_list):
print(f"[DEBUG] Decodificando partição {i+1}/{len(latents_list)}: {tuple(latents.shape)}")
output_video_path = os.path.join(temp_dir, f"output_{used_seed}_{i}.mp4")
pixel_tensor = vae_manager_singleton.decode(
latents.to(self.device, non_blocking=True),
decode_timestep=float(self.config.get("decode_timestep", 0.05))
)
log_tensor_info(pixel_tensor, "Pixel tensor (VAE saída)")
video_encode_tool_singleton.save_video_from_tensor(
pixel_tensor, output_video_path, fps=call_kwargs["frame_rate"], progress_callback=progress_callback
)
partes_mp4.append(output_video_path)
del pixel_tensor; del latents; gc.collect(); torch.cuda.empty_cache()
final_vid = os.path.join(results_dir, f"final_video_{used_seed}.mp4")
if len(partes_mp4) > 1:
# A função _gerar_lista_com_transicoes é complexa, usando uma concatenação direta como fallback robusto.
# Para usar a transição, a lógica de overlap na divisão de latentes precisa ser perfeita.
print("[DEBUG] Múltiplas partes geradas, concatenando...")
partes_mp4_fade = self._gerar_lista_com_transicoes(pasta=temp_dir, video_paths=partes_mp4, crossfade_frames=8)
self._concat_mp4s_no_reencode(partes_mp4_fade, final_vid)
else:
shutil.move(partes_mp4[0], final_vid)
self._log_gpu_memory("Fim da Geração")
return final_vid, used_seed
except Exception as e:
print("[DEBUG] EXCEÇÃO NA GERAÇÃO:")
print("".join(traceback.format_exception(type(e), e, e.__traceback__)))
raise
finally:
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
self.finalize(keep_paths=[]) # O resultado final já foi movido
print("Criando instância do VideoService. O carregamento do modelo começará agora...")
video_generation_service = VideoService() |