File size: 12,018 Bytes
386d75b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import gradio as gr
import torch
import numpy as np
import tempfile
import os

from diffusers import LTXLatentUpsamplePipeline
from pipeline_ltx_condition_control import LTXConditionPipeline, LTXVideoCondition
from diffusers.utils import export_to_video, load_video
from torchvision import transforms
import random
import imageio
from PIL import Image, ImageOps
import cv2
import shutil
import glob
from pathlib import Path

import warnings
import logging
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", message=".*")
from huggingface_hub import logging as ll
ll.set_verbosity_error()
ll.set_verbosity_warning()
ll.set_verbosity_info()
ll.set_verbosity_debug()
logger = logging.getLogger("AducDebug")
logging.basicConfig(level=logging.DEBUG)
logger.setLevel(logging.DEBUG)

FPS = 24
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

base_model_repo = "Lightricks/LTX-Video"
print(f"Carregando a arquitetura completa da pipeline de {base_model_repo}...")
pipeline = LTXConditionPipeline.from_pretrained(
    base_model_repo,
    torch_dtype=dtype,
    cache_dir=os.getenv("HF_HOME_CACHE"),
    token=os.getenv("HF_TOKEN"),
)

# 2. Definir a URL para o arquivo de pesos FP8 que contém apenas o TRANSFORMER.
fp8_transformer_weights_url = "https://huggingface.co/Lightricks/LTX-Video/ltxv-13b-0.9.8-distilled-fp8.safetensors"
print(f"Sobrescrevendo pesos do Transformer com o arquivo FP8 de: {fp8_transformer_weights_url}")

pipeline.load_lora_weights(fp8_transformer_weights_url, from_diffusers=True)

print("Carregando upsampler...")
pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained(
    "Lightricks/ltxv-spatial-upscaler-0.9.7",
    cache_dir=os.getenv("HF_HOME_CACHE"),
    vae=pipeline.vae, 
    torch_dtype=dtype
)

print("Movendo modelos para o dispositivo...")
pipeline.to(device)
pipe_upsample.to(device)
pipeline.vae.enable_tiling()

current_dir = Path(__file__).parent

def cleanup_session_files(request: gr.Request):
    """Limpa arquivos temporários da sessão quando o usuário se desconecta."""
    try:
        session_id = request.session_hash
        session_dir = os.path.join("/tmp/gradio", session_id)
        if os.path.exists(session_dir):
            shutil.rmtree(session_dir)
            print(f"Limpou o diretório da sessão: {session_dir}")
    except Exception as e:
        print(f"Erro durante a limpeza da sessão: {e}")

def read_video(video) -> torch.Tensor:
    """Lê um arquivo de vídeo e converte para um tensor torch."""
    to_tensor_transform = transforms.ToTensor()
    if isinstance(video, str):
        video_tensor = torch.stack([to_tensor_transform(img) for img in imageio.get_reader(video)])
    else:
        video_tensor = torch.stack([to_tensor_transform(img) for img in video])
    return video_tensor


def round_to_nearest_resolution_acceptable_by_vae(height, width, vae_temporal_compression_ratio):
    """Arredonda a resolução para valores aceitáveis pelo VAE."""
    height = height - (height % vae_temporal_compression_ratio)
    width = width - (width % vae_temporal_compression_ratio)
    return height, width


# A assinatura da função volta a aceitar argumentos individuais para compatibilidade com o Gradio
def generate_video(
    condition_image_1,
    condition_strength_1,
    condition_frame_index_1,
    condition_image_2,
    condition_strength_2,
    condition_frame_index_2,
    prompt,
    duration=3.0,
    negative_prompt="worst quality, inconsistent motion, blurry, jittery, distorted",
    height=768,
    width=1152,
    num_inference_steps=7,
    guidance_scale=1.0,
    seed=0,
    randomize_seed=False,
    progress=gr.Progress(track_tqdm=True)
):
    try:
        # Lógica para agrupar as condições *dentro* da função
        # Cálculo de frames e resolução
        num_frames = int(duration * FPS) + 1
        temporal_compression = pipeline.vae_temporal_compression_ratio
        num_frames = ((num_frames - 1) // temporal_compression) * temporal_compression + 1
        
        downscale_factor = 2 / 3
        downscaled_height = int(height * downscale_factor)
        downscaled_width = int(width * downscale_factor)
        downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(
            downscaled_height, downscaled_width, pipeline.vae_temporal_compression_ratio
        )
        
        
        
        conditions = []
        if condition_image_1 is not None:
            condition_image_1 = ImageOps.fit(condition_image_1, (downscaled_width, downscaled_height), Image.LANCZOS)
            conditions.append(LTXVideoCondition(
                image=condition_image_1,
                strength=condition_strength_1,
                frame_index=int(condition_frame_index_1)
            ))
        if condition_image_2 is not None:
            condition_image_2 = ImageOps.fit(condition_image_2, (downscaled_width, downscaled_height), Image.LANCZOS)
            conditions.append(LTXVideoCondition(
                image=condition_image_2,
                strength=condition_strength_2,
                frame_index=int(condition_frame_index_2)
            ))

        pipeline_args = {}
        if conditions:
            pipeline_args["conditions"] = conditions

        # Manipulação da seed
        if randomize_seed:
            seed = random.randint(0, 2**32 - 1)

                
        # ETAPA 1: Geração do vídeo em baixa resolução
        latents = pipeline(
            prompt=prompt,
            negative_prompt=negative_prompt,
            width=downscaled_width,
            height=downscaled_height,
            num_frames=num_frames,
            timesteps=[1000, 993, 987, 981, 975, 909, 725, 0.03],
            decode_timestep=0.05,
            decode_noise_scale=0.025,
            image_cond_noise_scale=0.0,
            guidance_scale=guidance_scale,
            guidance_rescale=0.7,
            generator=torch.Generator().manual_seed(seed),
            output_type="latent",
            **pipeline_args
        ).frames

        # ETAPA 2: Upscale dos latentes
        #upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2
        #upscaled_latents = pipe_upsample(
        #    latents=latents,
        #    output_type="latent"
        #).frames       

        print(f"ETAPA 1 latents {latents.shape}")
        
        

        # ETAPA 3: Denoise final em alta resolução
        final_video_frames_np = pipeline(
            prompt=prompt,
            negative_prompt=negative_prompt,
            width=downscaled_width,
            height=downscaled_height,
            num_frames=num_frames,
            denoise_strength=0.999,
            timesteps=[1000, 909, 725, 421, 0],
            latents=latents,
            decode_timestep=0.05,
            decode_noise_scale=0.025,
            image_cond_noise_scale=0.0,
            guidance_scale=guidance_scale,
            guidance_rescale=0.7,
            generator=torch.Generator(device="cuda").manual_seed(seed),
            output_type="np",
            **pipeline_args
        ).frames[0]

        print(f"ETAPA 3 final_video_frames_np {final_video_frames_np.shape}")

        # Exportação para arquivo MP4
        video_uint8_frames = [(frame * 255).astype(np.uint8) for frame in final_video_frames_np]
        output_filename = "output.mp4"
        with imageio.get_writer(output_filename, fps=FPS, quality=8, macro_block_size=1) as writer:
             for frame_idx, frame_data in enumerate(video_uint8_frames):
                progress((frame_idx + 1) / len(video_uint8_frames), desc="Codificando frames do vídeo...")
                writer.append_data(frame_data)

        return output_filename, seed
        
    except Exception as e:
        print(f"Ocorreu um erro: {e}")
        return None, seed

# Interface Gráfica com Gradio
with gr.Blocks(theme=gr.themes.Ocean(font=[gr.themes.GoogleFont("Lexend Deca"), "sans-serif"]), delete_cache=(60, 900)) as demo:
    gr.Markdown(
        """
        # Geração de Vídeo com LTX
        **Crie vídeos a partir de texto e imagens de condição usando o modelo LTX-Video.**
        """
    )
    
    with gr.Row():
        with gr.Column(scale=1):
    
            prompt = gr.Textbox(
                label="Prompt",
                placeholder="Descreva o vídeo que você quer gerar...",
                lines=3,
                value="O Coringa em seu icônico terno roxo e cabelo verde, dançando sozinho em um quarto escuro e decadente. Seus movimentos são erráticos e imprevisíveis, alternando entre graciosos e caóticos enquanto ele se perde no momento. A câmera captura seus gestos teatrais, sua dança refletindo sua personalidade desequilibrada. Iluminação temperamental com sombras dançando pelas paredes, criando uma atmosfera de bela loucura."
            )
            
            with gr.Accordion("Imagem de Condição 1", open=True):
                condition_image_1 = gr.Image(label="Imagem de Condição 1", type="pil")
                with gr.Row():
                    condition_strength_1 = gr.Slider(label="Peso (Strength)", minimum=0.0, maximum=1.0, step=0.05, value=1.0)
                    condition_frame_index_1 = gr.Number(label="Frame", value=0, precision=0)

            with gr.Accordion("Imagem de Condição 2", open=False):
                condition_image_2 = gr.Image(label="Imagem de Condição 2", type="pil")
                with gr.Row():
                    condition_strength_2 = gr.Slider(label="Peso (Strength)", minimum=0.0, maximum=1.0, step=0.05, value=1.0)
                    condition_frame_index_2 = gr.Number(label="Frame", value=0, precision=0)
            
            duration = gr.Slider(label="Duração (segundos)", minimum=1.0, maximum=10.0, step=0.5, value=2)
            
            with gr.Accordion("Configurações Avançadas", open=False):
                negative_prompt = gr.Textbox(label="Prompt Negativo", placeholder="O que você não quer no vídeo...", lines=2, value="pior qualidade, movimento inconsistente, embaçado, tremido, distorcido")
                with gr.Row():
                    height = gr.Slider(label="Altura", minimum=256, maximum=1536, step=32, value=768)
                    width = gr.Slider(label="Largura", minimum=256, maximum=1536, step=32, value=1152)
                
                num_inference_steps = gr.Slider(label="Passos de Inferência", minimum=5, maximum=10, step=1, value=7, visible=False)
                
                with gr.Row():
                    guidance_scale = gr.Slider(label="Escala de Orientação (Guidance)", minimum=1.0, maximum=5.0, step=0.1, value=1.0)
                    
                with gr.Row():
                    randomize_seed = gr.Checkbox(label="Seed Aleatória", value=True)
                    seed = gr.Number(label="Seed", value=0, precision=0)
            
            generate_btn = gr.Button("Gerar Vídeo", variant="primary", size="lg")
        
        with gr.Column(scale=1):          
            output_video = gr.Video(label="Vídeo Gerado", height=400)
    
    # CORREÇÃO: A lista de inputs agora é "plana", contendo apenas componentes do Gradio
    generate_btn.click(
        fn=generate_video,
        inputs=[
            condition_image_1,
            condition_strength_1,
            condition_frame_index_1,
            condition_image_2,
            condition_strength_2,
            condition_frame_index_2,
            prompt,
            duration,
            negative_prompt,
            height,
            width,
            num_inference_steps,
            guidance_scale,
            seed,
            randomize_seed,
        ],
        outputs=[output_video, seed],
        show_progress=True
    )

    demo.unload(cleanup_session_files)


if __name__ == "__main__":
    demo.queue().launch(server_name="0.0.0.0", server_port=7860, debug=True, show_error=True)