File size: 13,220 Bytes
6d12705
 
469943a
db47818
280cfe1
db47818
280cfe1
dac32ed
 
9ac7175
 
dac32ed
9ac7175
280cfe1
 
dac32ed
3d98f2d
dac32ed
280cfe1
3d98f2d
469943a
dac32ed
 
 
 
 
469943a
280cfe1
469943a
280cfe1
9ac7175
 
6d12705
9ac7175
 
dac32ed
280cfe1
 
6d12705
 
280cfe1
 
469943a
280cfe1
dac32ed
280cfe1
 
 
6d12705
280cfe1
 
 
9ac7175
280cfe1
6d12705
 
 
280cfe1
9ac7175
6d12705
dac32ed
280cfe1
dac32ed
9ac7175
994d098
dac32ed
280cfe1
dac32ed
280cfe1
9ac7175
280cfe1
 
dac32ed
280cfe1
 
dac32ed
6d12705
469943a
280cfe1
 
dac32ed
 
 
 
469943a
dac32ed
 
 
 
 
 
 
 
 
 
280cfe1
dac32ed
 
469943a
280cfe1
 
dac32ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ac7175
280cfe1
6d12705
280cfe1
9ac7175
280cfe1
469943a
6d12705
280cfe1
6d12705
dac32ed
280cfe1
3d98f2d
280cfe1
6d12705
 
3d98f2d
280cfe1
3d98f2d
280cfe1
9ac7175
280cfe1
469943a
6d12705
469943a
280cfe1
3d98f2d
280cfe1
 
 
 
 
3d98f2d
 
280cfe1
6d12705
 
 
 
 
 
3d98f2d
280cfe1
7720807
280cfe1
469943a
280cfe1
6d12705
280cfe1
 
 
 
 
 
 
 
 
 
dac32ed
 
3d98f2d
dac32ed
 
 
 
 
 
 
 
 
 
280cfe1
 
469943a
dac32ed
 
 
280cfe1
 
6d12705
 
280cfe1
6d12705
dac32ed
3d98f2d
 
280cfe1
 
 
 
 
3d98f2d
dac32ed
 
 
db47818
280cfe1
6d12705
280cfe1
 
dac32ed
 
 
280cfe1
 
 
 
6d12705
 
280cfe1
dac32ed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# FILE: app.py
# DESCRIPTION: Final Gradio web interface for the ADUC-SDR Video Suite.
# This version definitively removes the guidance settings from the UI for a streamlined experience.

import gradio as gr
import traceback
import sys
import os
import logging

# ==============================================================================
# --- IMPORTAÇÃO DOS SERVIÇOS DE BACKEND E UTILS ---
# ==============================================================================
try:
    from api.ltx_server_refactored_complete import video_generation_service
    from api.utils.debug_utils import log_function_io
    from api.seedvr_server import seedvr_server_singleton as seedvr_inference_server
    logging.info("All backend services (LTX, SeedVR) and debug utils imported successfully.")
except ImportError as e:
    def log_function_io(func): return func
    logging.warning(f"Could not import a module. Some services or debug logs may be unavailable. Details: {e}")
    if 'video_generation_service' not in locals():
        logging.critical(f"FATAL: Main LTX service failed to import.", exc_info=True)
        sys.exit(1)
    if 'seedvr_inference_server' not in locals():
        seedvr_inference_server = None
        logging.warning("SeedVR server could not be initialized. Upscaling tab will be disabled.")
except Exception as e:
    logging.critical(f"FATAL ERROR during backend initialization. Details: {e}", exc_info=True)
    sys.exit(1)

# ==============================================================================
# --- FUNÇÕES WRAPPER (PONTE ENTRE UI E BACKEND) ---
# ==============================================================================

@log_function_io
def run_generate_base_video(
    generation_mode: str, prompt: str, neg_prompt: str, start_img: str, 
    height: int, width: int, duration: float,
    fp_num_inference_steps: int, fp_skip_initial_steps: int, fp_skip_final_steps: int,
    progress=gr.Progress(track_tqdm=True)
) -> tuple:
    """Wrapper that collects UI data and calls the backend (without guidance parameters)."""
    try:
        logging.info(f"[UI] Request received. Selected mode: {generation_mode}")
        initial_conditions = []
        if start_img:
            num_frames_estimate = int(duration * 24)
            items_list = [[start_img, 0, 1.0]]
            initial_conditions = video_generation_service.prepare_condition_items(
                items_list, height, width, num_frames_estimate
            )

        ltx_configs = {
            "num_inference_steps": fp_num_inference_steps,
            "skip_initial_inference_steps": fp_skip_initial_steps,
            "skip_final_inference_steps": fp_skip_final_steps,
        }

        video_path, tensor_path, final_seed = video_generation_service.generate_low_resolution(
            prompt=prompt, negative_prompt=neg_prompt,
            height=height, width=width, duration=duration,
            initial_conditions=initial_conditions, ltx_configs_override=ltx_configs
        )
        
        if not video_path: raise RuntimeError("Backend failed to return a valid video path.")
        new_state = {"low_res_video": video_path, "low_res_latents": tensor_path, "used_seed": final_seed}
        logging.info(f"[UI] Base video generation successful. Seed used: {final_seed}, Path: {video_path}")
        return video_path, new_state, gr.update(visible=True)
        
    except Exception as e:
        error_message = f"❌ An error occurred during base generation:\n{e}"
        logging.error(f"{error_message}\nDetails: {traceback.format_exc()}", exc_info=True)
        raise gr.Error(error_message)

@log_function_io
def run_ltx_refinement(state: dict, prompt: str, neg_prompt: str, progress=gr.Progress(track_tqdm=True)) -> tuple:
    """Wrapper for the LTX texture refinement function."""
    if not state or not state.get("low_res_latents"):
        raise gr.Error("Error: Please generate a base video in Step 1 before refining.")
    try:
        logging.info(f"[UI] Requesting LTX refinement for latents: {state.get('low_res_latents')}")
        video_path, tensor_path = video_generation_service.generate_upscale_denoise(
            latents_path=state["low_res_latents"],
            prompt=prompt, negative_prompt=neg_prompt,
            seed=state["used_seed"]
        )
        state["refined_video_ltx"] = video_path
        state["refined_latents_ltx"] = tensor_path
        logging.info(f"[UI] LTX refinement successful. Path: {video_path}")
        return video_path, state
    except Exception as e:
        error_message = f"❌ An error occurred during LTX Refinement:\n{e}"
        logging.error(f"{error_message}\nDetails: {traceback.format_exc()}", exc_info=True)
        raise gr.Error(error_message)

@log_function_io
def run_seedvr_upscaling(state: dict, seed: int, resolution: int, batch_size: int, fps: int, progress=gr.Progress(track_tqdm=True)) -> tuple:
    """Wrapper for the SeedVR resolution upscaling service."""
    if not state or not state.get("low_res_video"):
        raise gr.Error("Error: Please generate a base video in Step 1 before upscaling.")
    if not seedvr_inference_server:
        raise gr.Error("Error: The SeedVR upscaling server is not available.")
    try:
        logging.info(f"[UI] Requesting SeedVR upscaling for video: {state.get('low_res_video')}")
        def progress_wrapper(p, desc=""): progress(p, desc=desc)
        output_filepath = seedvr_inference_server.run_inference(
            file_path=state["low_res_video"], seed=int(seed), resolution=int(resolution),
            batch_size=int(batch_size), fps=float(fps), progress=progress_wrapper
        )
        status_message = f"✅ Upscaling complete!\nSaved to: {output_filepath}"
        logging.info(f"[UI] SeedVR upscaling successful. Path: {output_filepath}")
        return gr.update(value=output_filepath), gr.update(value=status_message)
    except Exception as e:
        error_message = f"❌ An error occurred during SeedVR Upscaling:\n{e}"
        logging.error(f"{error_message}\nDetails: {traceback.format_exc()}", exc_info=True)
        return None, gr.update(value=error_message)

# ==============================================================================
# --- CONSTRUÇÃO DA INTERFACE GRADIO ---
# ==============================================================================

def build_ui():
    """Builds the entire Gradio application UI."""
    with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo")) as demo:
        app_state = gr.State(value={"low_res_video": None, "low_res_latents": None, "used_seed": None})
        ui_components = {}
        gr.Markdown("# ADUC-SDR Video Suite - LTX & SeedVR Workflow", elem_id="main-title")
        with gr.Row():
            with gr.Column(scale=1): _build_generation_controls(ui_components)
            with gr.Column(scale=1):
                gr.Markdown("### Etapa 1: Vídeo Base Gerado")
                ui_components['low_res_video_output'] = gr.Video(label="O resultado aparecerá aqui", interactive=False)
                ui_components['used_seed_display'] = gr.Textbox(label="Seed Utilizada", interactive=False)
        _build_postprod_controls(ui_components)
        _register_event_handlers(app_state, ui_components)
    return demo

def _build_generation_controls(ui: dict):
    """Builds the UI components for Step 1, with the guidance section removed."""
    gr.Markdown("### Configurações de Geração")
    ui['generation_mode'] = gr.Radio(label="Modo de Geração", choices=["Simples (Prompt Único)", "Narrativa (Múltiplos Prompts)"], value="Narrativa (Múltiplos Prompts)")
    ui['prompt'] = gr.Textbox(label="Prompt(s)", value="Um leão majestoso caminha pela savana\nEle sobe em uma grande pedra e olha o horizonte", lines=4)
    ui['neg_prompt'] = gr.Textbox(label="Negative Prompt", value="blurry, low quality, bad anatomy, deformed", lines=2)
    ui['start_image'] = gr.Image(label="Imagem de Início (Opcional)", type="filepath", sources=["upload"])
    
    with gr.Accordion("Parâmetros Principais", open=True):
        ui['duration'] = gr.Slider(label="Duração Total (s)", value=4, step=1, minimum=1, maximum=30)
        with gr.Row():
            ui['height'] = gr.Slider(label="Height", value=432, step=8, minimum=256, maximum=1024)
            ui['width'] = gr.Slider(label="Width", value=768, step=8, minimum=256, maximum=1024)

    with gr.Accordion("Opções Avançadas LTX", open=False):
        gr.Markdown("#### Configurações de Passos de Inferência (First Pass)")
        gr.Markdown("*Deixe o valor padrão (ex: 20) ou 0 para usar a configuração do `config.yaml`.*")
        ui['fp_num_inference_steps'] = gr.Slider(label="Número de Passos", minimum=0, maximum=100, step=1, value=20, info="Padrão LTX: 20.")
        ui['fp_skip_initial_steps'] = gr.Slider(label="Pular Passos Iniciais", minimum=0, maximum=100, step=1, value=0)
        ui['fp_skip_final_steps'] = gr.Slider(label="Pular Passos Finais", minimum=0, maximum=100, step=1, value=0)
    
    ui['generate_low_btn'] = gr.Button("1. Gerar Vídeo Base", variant="primary")

def _build_postprod_controls(ui: dict):
    """Builds the UI components for Step 2: Post-Production."""
    with gr.Group(visible=False) as ui['post_prod_group']:
        gr.Markdown("--- \n## Etapa 2: Pós-Produção")
        with gr.Tabs():
            with gr.TabItem("🚀 Upscaler de Textura (LTX)"):
                with gr.Row():
                    with gr.Column(scale=1):
                         gr.Markdown("Usa o prompt e a semente originais para refinar o vídeo, adicionando detalhes e texturas de alta qualidade.")
                         ui['ltx_refine_btn'] = gr.Button("2. Aplicar Refinamento LTX", variant="primary")
                    with gr.Column(scale=1):
                        ui['ltx_refined_video_output'] = gr.Video(label="Vídeo com Textura Refinada", interactive=False)
            
            with gr.TabItem("✨ Upscaler de Resolução (SeedVR)"):
                is_seedvr_available = seedvr_inference_server is not None
                if not is_seedvr_available:
                    gr.Markdown("🔴 **AVISO: O serviço SeedVR não está disponível.**")
                with gr.Row():
                    with gr.Column(scale=1):
                        ui['seedvr_seed'] = gr.Slider(minimum=0, maximum=999999, value=42, step=1, label="Seed")
                        ui['seedvr_resolution'] = gr.Slider(minimum=720, maximum=2160, value=1080, step=8, label="Resolução Vertical Alvo")
                        ui['seedvr_batch_size'] = gr.Slider(minimum=1, maximum=16, value=4, step=1, label="Batch Size por GPU")
                        ui['seedvr_fps'] = gr.Number(label="FPS de Saída (0 = original)", value=0)
                        ui['run_seedvr_btn'] = gr.Button("2. Iniciar Upscaling SeedVR", variant="primary", interactive=is_seedvr_available)
                    with gr.Column(scale=1):
                        ui['seedvr_video_output'] = gr.Video(label="Vídeo com Upscale SeedVR", interactive=False)
                        ui['seedvr_status_box'] = gr.Textbox(label="Status do SeedVR", value="Aguardando...", lines=3, interactive=False)

def _register_event_handlers(app_state: gr.State, ui: dict):
    """Registers all Gradio event handlers."""
    def update_seed_display(state):
        return state.get("used_seed", "N/A")

    gen_inputs = [
        ui['generation_mode'], ui['prompt'], ui['neg_prompt'], ui['start_image'],
        ui['height'], ui['width'], ui['duration'],
        ui['fp_num_inference_steps'], ui['fp_skip_initial_steps'], ui['fp_skip_final_steps'],
    ]
    gen_outputs = [ui['low_res_video_output'], app_state, ui['post_prod_group']]
    
    (ui['generate_low_btn'].click(fn=run_generate_base_video, inputs=gen_inputs, outputs=gen_outputs)
     .then(fn=update_seed_display, inputs=[app_state], outputs=[ui['used_seed_display']]))

    refine_inputs = [app_state, ui['prompt'], ui['neg_prompt']]
    refine_outputs = [ui['ltx_refined_video_output'], app_state]
    ui['ltx_refine_btn'].click(fn=run_ltx_refinement, inputs=refine_inputs, outputs=refine_outputs)
    
    if 'run_seedvr_btn' in ui and ui['run_seedvr_btn'].interactive:
        seedvr_inputs = [app_state, ui['seedvr_seed'], ui['seedvr_resolution'], ui['seedvr_batch_size'], ui['seedvr_fps']]
        seedvr_outputs = [ui['seedvr_video_output'], ui['seedvr_status_box']]
        ui['run_seedvr_btn'].click(fn=run_seedvr_upscaling, inputs=seedvr_inputs, outputs=seedvr_outputs)

# ==============================================================================
# --- PONTO DE ENTRADA DA APLICAÇÃO ---
# ==============================================================================
if __name__ == "__main__":
    log_level = os.environ.get("ADUC_LOG_LEVEL", "INFO").upper()
    logging.basicConfig(level=log_level, format='[%(levelname)s] [%(name)s] %(message)s')
    
    print("Building Gradio UI...")
    gradio_app = build_ui()
    print("Launching Gradio app...")
    gradio_app.queue().launch(
        server_name=os.getenv("GRADIO_SERVER_NAME", "0.0.0.0"), 
        server_port=int(os.getenv("GRADIO_SERVER_PORT", "7860")),
        show_error=True
    )