Spaces:
Paused
Paused
File size: 13,220 Bytes
6d12705 469943a db47818 280cfe1 db47818 280cfe1 dac32ed 9ac7175 dac32ed 9ac7175 280cfe1 dac32ed 3d98f2d dac32ed 280cfe1 3d98f2d 469943a dac32ed 469943a 280cfe1 469943a 280cfe1 9ac7175 6d12705 9ac7175 dac32ed 280cfe1 6d12705 280cfe1 469943a 280cfe1 dac32ed 280cfe1 6d12705 280cfe1 9ac7175 280cfe1 6d12705 280cfe1 9ac7175 6d12705 dac32ed 280cfe1 dac32ed 9ac7175 994d098 dac32ed 280cfe1 dac32ed 280cfe1 9ac7175 280cfe1 dac32ed 280cfe1 dac32ed 6d12705 469943a 280cfe1 dac32ed 469943a dac32ed 280cfe1 dac32ed 469943a 280cfe1 dac32ed 9ac7175 280cfe1 6d12705 280cfe1 9ac7175 280cfe1 469943a 6d12705 280cfe1 6d12705 dac32ed 280cfe1 3d98f2d 280cfe1 6d12705 3d98f2d 280cfe1 3d98f2d 280cfe1 9ac7175 280cfe1 469943a 6d12705 469943a 280cfe1 3d98f2d 280cfe1 3d98f2d 280cfe1 6d12705 3d98f2d 280cfe1 7720807 280cfe1 469943a 280cfe1 6d12705 280cfe1 dac32ed 3d98f2d dac32ed 280cfe1 469943a dac32ed 280cfe1 6d12705 280cfe1 6d12705 dac32ed 3d98f2d 280cfe1 3d98f2d dac32ed db47818 280cfe1 6d12705 280cfe1 dac32ed 280cfe1 6d12705 280cfe1 dac32ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
# FILE: app.py
# DESCRIPTION: Final Gradio web interface for the ADUC-SDR Video Suite.
# This version definitively removes the guidance settings from the UI for a streamlined experience.
import gradio as gr
import traceback
import sys
import os
import logging
# ==============================================================================
# --- IMPORTAÇÃO DOS SERVIÇOS DE BACKEND E UTILS ---
# ==============================================================================
try:
from api.ltx_server_refactored_complete import video_generation_service
from api.utils.debug_utils import log_function_io
from api.seedvr_server import seedvr_server_singleton as seedvr_inference_server
logging.info("All backend services (LTX, SeedVR) and debug utils imported successfully.")
except ImportError as e:
def log_function_io(func): return func
logging.warning(f"Could not import a module. Some services or debug logs may be unavailable. Details: {e}")
if 'video_generation_service' not in locals():
logging.critical(f"FATAL: Main LTX service failed to import.", exc_info=True)
sys.exit(1)
if 'seedvr_inference_server' not in locals():
seedvr_inference_server = None
logging.warning("SeedVR server could not be initialized. Upscaling tab will be disabled.")
except Exception as e:
logging.critical(f"FATAL ERROR during backend initialization. Details: {e}", exc_info=True)
sys.exit(1)
# ==============================================================================
# --- FUNÇÕES WRAPPER (PONTE ENTRE UI E BACKEND) ---
# ==============================================================================
@log_function_io
def run_generate_base_video(
generation_mode: str, prompt: str, neg_prompt: str, start_img: str,
height: int, width: int, duration: float,
fp_num_inference_steps: int, fp_skip_initial_steps: int, fp_skip_final_steps: int,
progress=gr.Progress(track_tqdm=True)
) -> tuple:
"""Wrapper that collects UI data and calls the backend (without guidance parameters)."""
try:
logging.info(f"[UI] Request received. Selected mode: {generation_mode}")
initial_conditions = []
if start_img:
num_frames_estimate = int(duration * 24)
items_list = [[start_img, 0, 1.0]]
initial_conditions = video_generation_service.prepare_condition_items(
items_list, height, width, num_frames_estimate
)
ltx_configs = {
"num_inference_steps": fp_num_inference_steps,
"skip_initial_inference_steps": fp_skip_initial_steps,
"skip_final_inference_steps": fp_skip_final_steps,
}
video_path, tensor_path, final_seed = video_generation_service.generate_low_resolution(
prompt=prompt, negative_prompt=neg_prompt,
height=height, width=width, duration=duration,
initial_conditions=initial_conditions, ltx_configs_override=ltx_configs
)
if not video_path: raise RuntimeError("Backend failed to return a valid video path.")
new_state = {"low_res_video": video_path, "low_res_latents": tensor_path, "used_seed": final_seed}
logging.info(f"[UI] Base video generation successful. Seed used: {final_seed}, Path: {video_path}")
return video_path, new_state, gr.update(visible=True)
except Exception as e:
error_message = f"❌ An error occurred during base generation:\n{e}"
logging.error(f"{error_message}\nDetails: {traceback.format_exc()}", exc_info=True)
raise gr.Error(error_message)
@log_function_io
def run_ltx_refinement(state: dict, prompt: str, neg_prompt: str, progress=gr.Progress(track_tqdm=True)) -> tuple:
"""Wrapper for the LTX texture refinement function."""
if not state or not state.get("low_res_latents"):
raise gr.Error("Error: Please generate a base video in Step 1 before refining.")
try:
logging.info(f"[UI] Requesting LTX refinement for latents: {state.get('low_res_latents')}")
video_path, tensor_path = video_generation_service.generate_upscale_denoise(
latents_path=state["low_res_latents"],
prompt=prompt, negative_prompt=neg_prompt,
seed=state["used_seed"]
)
state["refined_video_ltx"] = video_path
state["refined_latents_ltx"] = tensor_path
logging.info(f"[UI] LTX refinement successful. Path: {video_path}")
return video_path, state
except Exception as e:
error_message = f"❌ An error occurred during LTX Refinement:\n{e}"
logging.error(f"{error_message}\nDetails: {traceback.format_exc()}", exc_info=True)
raise gr.Error(error_message)
@log_function_io
def run_seedvr_upscaling(state: dict, seed: int, resolution: int, batch_size: int, fps: int, progress=gr.Progress(track_tqdm=True)) -> tuple:
"""Wrapper for the SeedVR resolution upscaling service."""
if not state or not state.get("low_res_video"):
raise gr.Error("Error: Please generate a base video in Step 1 before upscaling.")
if not seedvr_inference_server:
raise gr.Error("Error: The SeedVR upscaling server is not available.")
try:
logging.info(f"[UI] Requesting SeedVR upscaling for video: {state.get('low_res_video')}")
def progress_wrapper(p, desc=""): progress(p, desc=desc)
output_filepath = seedvr_inference_server.run_inference(
file_path=state["low_res_video"], seed=int(seed), resolution=int(resolution),
batch_size=int(batch_size), fps=float(fps), progress=progress_wrapper
)
status_message = f"✅ Upscaling complete!\nSaved to: {output_filepath}"
logging.info(f"[UI] SeedVR upscaling successful. Path: {output_filepath}")
return gr.update(value=output_filepath), gr.update(value=status_message)
except Exception as e:
error_message = f"❌ An error occurred during SeedVR Upscaling:\n{e}"
logging.error(f"{error_message}\nDetails: {traceback.format_exc()}", exc_info=True)
return None, gr.update(value=error_message)
# ==============================================================================
# --- CONSTRUÇÃO DA INTERFACE GRADIO ---
# ==============================================================================
def build_ui():
"""Builds the entire Gradio application UI."""
with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo")) as demo:
app_state = gr.State(value={"low_res_video": None, "low_res_latents": None, "used_seed": None})
ui_components = {}
gr.Markdown("# ADUC-SDR Video Suite - LTX & SeedVR Workflow", elem_id="main-title")
with gr.Row():
with gr.Column(scale=1): _build_generation_controls(ui_components)
with gr.Column(scale=1):
gr.Markdown("### Etapa 1: Vídeo Base Gerado")
ui_components['low_res_video_output'] = gr.Video(label="O resultado aparecerá aqui", interactive=False)
ui_components['used_seed_display'] = gr.Textbox(label="Seed Utilizada", interactive=False)
_build_postprod_controls(ui_components)
_register_event_handlers(app_state, ui_components)
return demo
def _build_generation_controls(ui: dict):
"""Builds the UI components for Step 1, with the guidance section removed."""
gr.Markdown("### Configurações de Geração")
ui['generation_mode'] = gr.Radio(label="Modo de Geração", choices=["Simples (Prompt Único)", "Narrativa (Múltiplos Prompts)"], value="Narrativa (Múltiplos Prompts)")
ui['prompt'] = gr.Textbox(label="Prompt(s)", value="Um leão majestoso caminha pela savana\nEle sobe em uma grande pedra e olha o horizonte", lines=4)
ui['neg_prompt'] = gr.Textbox(label="Negative Prompt", value="blurry, low quality, bad anatomy, deformed", lines=2)
ui['start_image'] = gr.Image(label="Imagem de Início (Opcional)", type="filepath", sources=["upload"])
with gr.Accordion("Parâmetros Principais", open=True):
ui['duration'] = gr.Slider(label="Duração Total (s)", value=4, step=1, minimum=1, maximum=30)
with gr.Row():
ui['height'] = gr.Slider(label="Height", value=432, step=8, minimum=256, maximum=1024)
ui['width'] = gr.Slider(label="Width", value=768, step=8, minimum=256, maximum=1024)
with gr.Accordion("Opções Avançadas LTX", open=False):
gr.Markdown("#### Configurações de Passos de Inferência (First Pass)")
gr.Markdown("*Deixe o valor padrão (ex: 20) ou 0 para usar a configuração do `config.yaml`.*")
ui['fp_num_inference_steps'] = gr.Slider(label="Número de Passos", minimum=0, maximum=100, step=1, value=20, info="Padrão LTX: 20.")
ui['fp_skip_initial_steps'] = gr.Slider(label="Pular Passos Iniciais", minimum=0, maximum=100, step=1, value=0)
ui['fp_skip_final_steps'] = gr.Slider(label="Pular Passos Finais", minimum=0, maximum=100, step=1, value=0)
ui['generate_low_btn'] = gr.Button("1. Gerar Vídeo Base", variant="primary")
def _build_postprod_controls(ui: dict):
"""Builds the UI components for Step 2: Post-Production."""
with gr.Group(visible=False) as ui['post_prod_group']:
gr.Markdown("--- \n## Etapa 2: Pós-Produção")
with gr.Tabs():
with gr.TabItem("🚀 Upscaler de Textura (LTX)"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("Usa o prompt e a semente originais para refinar o vídeo, adicionando detalhes e texturas de alta qualidade.")
ui['ltx_refine_btn'] = gr.Button("2. Aplicar Refinamento LTX", variant="primary")
with gr.Column(scale=1):
ui['ltx_refined_video_output'] = gr.Video(label="Vídeo com Textura Refinada", interactive=False)
with gr.TabItem("✨ Upscaler de Resolução (SeedVR)"):
is_seedvr_available = seedvr_inference_server is not None
if not is_seedvr_available:
gr.Markdown("🔴 **AVISO: O serviço SeedVR não está disponível.**")
with gr.Row():
with gr.Column(scale=1):
ui['seedvr_seed'] = gr.Slider(minimum=0, maximum=999999, value=42, step=1, label="Seed")
ui['seedvr_resolution'] = gr.Slider(minimum=720, maximum=2160, value=1080, step=8, label="Resolução Vertical Alvo")
ui['seedvr_batch_size'] = gr.Slider(minimum=1, maximum=16, value=4, step=1, label="Batch Size por GPU")
ui['seedvr_fps'] = gr.Number(label="FPS de Saída (0 = original)", value=0)
ui['run_seedvr_btn'] = gr.Button("2. Iniciar Upscaling SeedVR", variant="primary", interactive=is_seedvr_available)
with gr.Column(scale=1):
ui['seedvr_video_output'] = gr.Video(label="Vídeo com Upscale SeedVR", interactive=False)
ui['seedvr_status_box'] = gr.Textbox(label="Status do SeedVR", value="Aguardando...", lines=3, interactive=False)
def _register_event_handlers(app_state: gr.State, ui: dict):
"""Registers all Gradio event handlers."""
def update_seed_display(state):
return state.get("used_seed", "N/A")
gen_inputs = [
ui['generation_mode'], ui['prompt'], ui['neg_prompt'], ui['start_image'],
ui['height'], ui['width'], ui['duration'],
ui['fp_num_inference_steps'], ui['fp_skip_initial_steps'], ui['fp_skip_final_steps'],
]
gen_outputs = [ui['low_res_video_output'], app_state, ui['post_prod_group']]
(ui['generate_low_btn'].click(fn=run_generate_base_video, inputs=gen_inputs, outputs=gen_outputs)
.then(fn=update_seed_display, inputs=[app_state], outputs=[ui['used_seed_display']]))
refine_inputs = [app_state, ui['prompt'], ui['neg_prompt']]
refine_outputs = [ui['ltx_refined_video_output'], app_state]
ui['ltx_refine_btn'].click(fn=run_ltx_refinement, inputs=refine_inputs, outputs=refine_outputs)
if 'run_seedvr_btn' in ui and ui['run_seedvr_btn'].interactive:
seedvr_inputs = [app_state, ui['seedvr_seed'], ui['seedvr_resolution'], ui['seedvr_batch_size'], ui['seedvr_fps']]
seedvr_outputs = [ui['seedvr_video_output'], ui['seedvr_status_box']]
ui['run_seedvr_btn'].click(fn=run_seedvr_upscaling, inputs=seedvr_inputs, outputs=seedvr_outputs)
# ==============================================================================
# --- PONTO DE ENTRADA DA APLICAÇÃO ---
# ==============================================================================
if __name__ == "__main__":
log_level = os.environ.get("ADUC_LOG_LEVEL", "INFO").upper()
logging.basicConfig(level=log_level, format='[%(levelname)s] [%(name)s] %(message)s')
print("Building Gradio UI...")
gradio_app = build_ui()
print("Launching Gradio app...")
gradio_app.queue().launch(
server_name=os.getenv("GRADIO_SERVER_NAME", "0.0.0.0"),
server_port=int(os.getenv("GRADIO_SERVER_PORT", "7860")),
show_error=True
) |