Test / app.py
eeuuia's picture
Update app.py
0701f73 verified
raw
history blame
16.7 kB
import gradio as gr
import torch
import numpy as np
import tempfile
import os
from torchvision import transforms
from diffusers import LTXLatentUpsamplePipeline, AutoModel
#from pipeline_ltx_condition_control import LTXConditionPipeline, LTXVideoCondition
from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXConditionPipeline, LTXVideoCondition
from diffusers.utils import export_to_video, load_video
from torchvision import transforms
import random
import imageio
from PIL import Image, ImageOps
import cv2
import shutil
import glob
from pathlib import Path
import warnings
import logging
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", message=".*")
from huggingface_hub import logging as ll
ll.set_verbosity_error()
ll.set_verbosity_warning()
ll.set_verbosity_info()
ll.set_verbosity_debug()
logger = logging.getLogger("AducDebug")
logging.basicConfig(level=logging.DEBUG)
logger.setLevel(logging.DEBUG)
FPS = 24
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# Carregamento das pipelines
#pipeline = LTXConditionPipeline.from_pretrained(
# "Lightricks/LTX-Video-0.9.8-13B-distilled",
# offload_state_dict=False,
# torch_dtype=torch.bfloat16,
# cache_dir=os.getenv("HF_HOME_CACHE"),
# token=os.getenv("HF_TOKEN"),
#)
base_repo="Lightricks/LTX-Video"
checkpoint_path="ltxv-13b-0.9.8-distilled.safetensors"
upscaler_repo="Lightricks/ltxv-spatial-upscaler-0.9.7"
CACHE_DIR=os.getenv("HF_HOME_CACHE")
FPS = 24
# 2. Baixar os arquivos do modelo base
print(f"=== Baixando snapshot do repositório base: {base_repo} ===")
ckpt_path_str = hf_hub_download(repo_id=base_repo, filename=checkpoint_path, cache_dir=CACHE_DIR)
ckpt_path = Path(ckpt_path_str)
if not ckpt_path.is_file():
raise FileNotFoundError(f"Main checkpoint file not found: {ckpt_path}")
# 3. Carregar cada componente da pipeline explicitamente
print("=== Carregando componentes da pipeline... ===")
vae = AutoModel.from_pretrained(
"Lightricks/LTX-Video",
subfolder="vae",
dtype=torch_dtype,
cache_dir=CACHE_DIR
)
text_encoder = AutoModel.from_pretrained(
"Lightricks/LTX-Video",
subfolder="text_encoder",
dtype=torch_dtype,
cache_dir=CACHE_DIR
)
scheduler = AutoModel.from_pretrained(
"Lightricks/LTX-Video",
subfolder="scheduler",
dtype=torch_dtype,
cache_dir=CACHE_DIR
)
tokenizer = AutoModel.from_pretrained(
"Lightricks/LTX-Video",
subfolder="tokenizer",
dtype=torch_dtype,
cache_dir=CACHE_DIR
)
if hasattr(scheduler.config, 'use_dynamic_shifting') and scheduler.config.use_dynamic_shifting:
print("[Config] Desativando 'use_dynamic_shifting' no scheduler.")
scheduler.config.use_dynamic_shifting = False
transformer = AutoModel.from_pretrained(
"Lightricks/LTX-Video",
subfolder="transformer",
dtype=torch.bfloat16,
cache_dir=CACHE_DIR
)
transformer.enable_layerwise_casting(
storage_dtype=torch.float8_e4m3fn, compute_dtype=torch.bfloat16
)
# 4. Montar a pipeline principal
print("Montando a LTXConditionPipeline...")
pipeline = LTXConditionPipeline(
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer,
scheduler=scheduler, transformer=transformer, cache_dir=CACHE_DIR
)
pipeline.to(device)
pipeline.vae.enable_tiling()
pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained(
"Lightricks/ltxv-spatial-upscaler-0.9.7",
cache_dir=os.getenv("HF_HOME_CACHE"),
vae=pipeline.vae, torch_dtype=dtype
)
pipeline.to(device)
pipe_upsample.to(device)
pipeline.vae.enable_tiling()
current_dir = Path(__file__).parent
def cleanup_session_files(request: gr.Request):
"""Limpa arquivos temporários da sessão quando o usuário se desconecta."""
try:
session_id = request.session_hash
session_dir = os.path.join("/tmp/gradio", session_id)
if os.path.exists(session_dir):
shutil.rmtree(session_dir)
print(f"Limpou o diretório da sessão: {session_dir}")
except Exception as e:
print(f"Erro durante a limpeza da sessão: {e}")
def read_video(video) -> torch.Tensor:
"""Lê um arquivo de vídeo e converte para um tensor torch."""
to_tensor_transform = transforms.ToTensor()
if isinstance(video, str):
video_tensor = torch.stack([to_tensor_transform(img) for img in imageio.get_reader(video)])
else:
video_tensor = torch.stack([to_tensor_transform(img) for img in video])
return video_tensor
def round_to_nearest_resolution_acceptable_by_vae(height, width, vae_temporal_compression_ratio):
"""Arredonda a resolução para valores aceitáveis pelo VAE."""
height = height - (height % vae_temporal_compression_ratio)
width = width - (width % vae_temporal_compression_ratio)
return height, width
# A assinatura da função volta a aceitar argumentos individuais para compatibilidade com o Gradio
def generate_video(
condition_image_1,
condition_strength_1,
condition_frame_index_1,
condition_image_2,
condition_strength_2,
condition_frame_index_2,
prompt,
duration=3.0,
negative_prompt="worst quality, inconsistent motion, blurry, jittery, distorted",
height=768,
width=1152,
num_inference_steps=7,
guidance_scale=1.0,
seed=0,
randomize_seed=False,
progress=gr.Progress(track_tqdm=True)
):
if True:
# Lógica para agrupar as condições *dentro* da função
# Cálculo de frames e resolução
num_frames = int(duration * FPS) + 1
temporal_compression = pipeline.vae_temporal_compression_ratio
num_frames = ((num_frames - 1) // temporal_compression) * temporal_compression + 1
downscale_factor = 2 / 3
downscaled_height = int(height * downscale_factor)
downscaled_width = int(width * downscale_factor)
downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(
downscaled_height, downscaled_width, pipeline.vae_temporal_compression_ratio
)
conditions = []
if condition_image_1 is not None:
condition_image_1 = ImageOps.fit(condition_image_1, (downscaled_width, downscaled_height), Image.LANCZOS)
conditions.append(LTXVideoCondition(
image=condition_image_1,
strength=condition_strength_1,
frame_index=int(condition_frame_index_1)
))
if condition_image_2 is not None:
condition_image_2 = ImageOps.fit(condition_image_2, (downscaled_width, downscaled_height), Image.LANCZOS)
conditions.append(LTXVideoCondition(
image=condition_image_2,
strength=condition_strength_2,
frame_index=int(condition_frame_index_2)
))
pipeline_args = {}
if conditions:
pipeline_args["conditions"] = conditions
if True:
# dentro da função generatevideo(), após calcular downscaledheight, downscaledwidth:
conditions = []
def image_to_latents(img: Image):
# converte PIL→tensor 4-D [C, H, W]
tensor = transforms.ToTensor()(img).unsqueeze(0) # [1, C, H, W]
tensor = tensor.unsqueeze(2).to(device).to(dtype) # [1, C, 1, H, W]
with torch.no_grad():
vae_out = pipeline.vae.encode(tensor) # agora aceita 5-D
latents = vae_out.latent_dist.sample() # amostra 5-D [1, C_lat, 1, H', W']
# aplica fator de escala se houver
if hasattr(pipeline.vae.config, "scaling_factor"):
latents = latents * pipeline.vae.config.scaling_factor
return latents
# exemplo para primeira condição
if condition_image_1 is not None:
img1 = ImageOps.fit(condition_image_1, (downscaled_width, downscaled_height), Image.LANCZOS)
lat1 = image_to_latents(img1)
# agora lat1 → forma [1, C, H', W'], expande dimensão de frames
# aqui usamos 1 frame de condicionamento; se quiser mais, repita ou ajuste
lat1 = lat1.unsqueeze(2) # [1, C, 1, H', W']
conditions.append(
LTXVideoCondition(
latents=lat1,
strength=condition_strength_1,
frame_index=int(condition_frame_index_1),
)
)
print (f"condition_image_1 {lat1.shape}")
# mesma lógica para condição 2
if condition_image_2 is not None:
img2 = ImageOps.fit(condition_image_2, (downscaled_width, downscaled_height), Image.LANCZOS)
lat2 = image_to_latents(img2).unsqueeze(2)
conditions.append(
LTXVideoCondition(
latents=lat2,
strength=condition_strength_2,
frame_index=int(condition_frame_index_2),
)
)
print (f"condition_image_2 {lat2.shape}")
# Manipulação da seed
if randomize_seed:
seed = random.randint(0, 2**32 - 1)
# ETAPA 1: Geração do vídeo em baixa resolução
latents = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
width=downscaled_width,
height=downscaled_height,
num_frames=num_frames,
timesteps=[1000, 993, 987, 981, 975, 909, 725, 0.03],
decode_timestep=0.05,
decode_noise_scale=0.025,
image_cond_noise_scale=0.0,
guidance_scale=guidance_scale,
guidance_rescale=0.7,
generator=torch.Generator().manual_seed(seed),
output_type="latent",
**pipeline_args
).frames
# ETAPA 2: Upscale dos latentes
upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2
upscaled_latents = pipe_upsample(
latents=latents,
output_type="latent"
).frames
conditions = []
if condition_image_1 is not None:
condition_image_1 = ImageOps.fit(condition_image_1, (upscaled_width, upscaled_height), Image.LANCZOS)
conditions.append(LTXVideoCondition(
image=condition_image_1,
strength=condition_strength_1,
frame_index=int(condition_frame_index_1)
))
if condition_image_2 is not None:
condition_image_2 = ImageOps.fit(condition_image_2, (upscaled_width, upscaled_height), Image.LANCZOS)
conditions.append(LTXVideoCondition(
image=condition_image_2,
strength=condition_strength_2,
frame_index=int(condition_frame_index_2)
))
pipeline_args = {}
if conditions:
pipeline_args["conditions"] = conditions
# ETAPA 3: Denoise final em alta resolução
final_video_frames_np = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
width=upscaled_width,
height=upscaled_height,
num_frames=num_frames,
denoise_strength=0.999,
timesteps=[1000, 909, 725, 421, 0],
latents=upscaled_latents,
decode_timestep=0.05,
decode_noise_scale=0.025,
image_cond_noise_scale=0.0,
guidance_scale=guidance_scale,
guidance_rescale=0.7,
generator=torch.Generator(device="cuda").manual_seed(seed),
output_type="np",
**pipeline_args
).frames[0]
# Exportação para arquivo MP4
video_uint8_frames = [(frame * 255).astype(np.uint8) for frame in final_video_frames_np]
output_filename = "output.mp4"
with imageio.get_writer(output_filename, fps=FPS, quality=8, macro_block_size=1) as writer:
for frame_idx, frame_data in enumerate(video_uint8_frames):
progress((frame_idx + 1) / len(video_uint8_frames), desc="Codificando frames do vídeo...")
writer.append_data(frame_data)
return output_filename, seed
# Interface Gráfica com Gradio
with gr.Blocks(theme=gr.themes.Ocean(font=[gr.themes.GoogleFont("Lexend Deca"), "sans-serif"]), delete_cache=(60, 900)) as demo:
gr.Markdown(
"""
# Geração de Vídeo com LTX
**Crie vídeos a partir de texto e imagens de condição usando o modelo LTX-Video.**
"""
)
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(
label="Prompt",
placeholder="Descreva o vídeo que você quer gerar...",
lines=3,
value="O Coringa em seu icônico terno roxo e cabelo verde, dançando sozinho em um quarto escuro e decadente. Seus movimentos são erráticos e imprevisíveis, alternando entre graciosos e caóticos enquanto ele se perde no momento. A câmera captura seus gestos teatrais, sua dança refletindo sua personalidade desequilibrada. Iluminação temperamental com sombras dançando pelas paredes, criando uma atmosfera de bela loucura."
)
with gr.Accordion("Imagem de Condição 1", open=True):
condition_image_1 = gr.Image(label="Imagem de Condição 1", type="pil")
with gr.Row():
condition_strength_1 = gr.Slider(label="Peso (Strength)", minimum=0.0, maximum=1.0, step=0.05, value=1.0)
condition_frame_index_1 = gr.Number(label="Frame", value=0, precision=0)
with gr.Accordion("Imagem de Condição 2", open=False):
condition_image_2 = gr.Image(label="Imagem de Condição 2", type="pil")
with gr.Row():
condition_strength_2 = gr.Slider(label="Peso (Strength)", minimum=0.0, maximum=1.0, step=0.05, value=1.0)
condition_frame_index_2 = gr.Number(label="Frame", value=0, precision=0)
duration = gr.Slider(label="Duração (segundos)", minimum=1.0, maximum=10.0, step=0.5, value=2)
with gr.Accordion("Configurações Avançadas", open=False):
negative_prompt = gr.Textbox(label="Prompt Negativo", placeholder="O que você não quer no vídeo...", lines=2, value="pior qualidade, movimento inconsistente, embaçado, tremido, distorcido")
with gr.Row():
height = gr.Slider(label="Altura", minimum=256, maximum=1536, step=32, value=768)
width = gr.Slider(label="Largura", minimum=256, maximum=1536, step=32, value=1152)
num_inference_steps = gr.Slider(label="Passos de Inferência", minimum=5, maximum=10, step=1, value=7, visible=False)
with gr.Row():
guidance_scale = gr.Slider(label="Escala de Orientação (Guidance)", minimum=1.0, maximum=5.0, step=0.1, value=1.0)
with gr.Row():
randomize_seed = gr.Checkbox(label="Seed Aleatória", value=True)
seed = gr.Number(label="Seed", value=0, precision=0)
generate_btn = gr.Button("Gerar Vídeo", variant="primary", size="lg")
with gr.Column(scale=1):
output_video = gr.Video(label="Vídeo Gerado", height=400)
# CORREÇÃO: A lista de inputs agora é "plana", contendo apenas componentes do Gradio
generate_btn.click(
fn=generate_video,
inputs=[
condition_image_1,
condition_strength_1,
condition_frame_index_1,
condition_image_2,
condition_strength_2,
condition_frame_index_2,
prompt,
duration,
negative_prompt,
height,
width,
num_inference_steps,
guidance_scale,
seed,
randomize_seed,
],
outputs=[output_video, seed],
show_progress=True
)
demo.unload(cleanup_session_files)
if __name__ == "__main__":
demo.queue().launch(server_name="0.0.0.0", server_port=7860, debug=True, show_error=True)