Spaces:
Paused
Paused
| # ltx_server.py — VideoService (beta 1.1) | |
| # Sempre output_type="latent"; no final: VAE (bloco inteiro) → pixels → MP4. | |
| # Ignora UserWarning/FutureWarning e injeta VAE no manager com dtype/device corretos. | |
| # --- 0. WARNINGS E AMBIENTE --- | |
| import warnings | |
| warnings.filterwarnings("ignore", category=UserWarning) | |
| warnings.filterwarnings("ignore", category=FutureWarning) | |
| warnings.filterwarnings("ignore", message=".*") | |
| from huggingface_hub import logging, hf_hub_download | |
| logging.set_verbosity_error() | |
| logging.set_verbosity_warning() | |
| logging.set_verbosity_info() | |
| logging.set_verbosity_debug() | |
| LTXV_DEBUG=1 | |
| LTXV_FRAME_LOG_EVERY=8 | |
| # --- 1. IMPORTAÇÕES --- | |
| import os, subprocess, shlex, tempfile | |
| import torch | |
| import json | |
| import numpy as np | |
| import random | |
| import os | |
| import shlex | |
| import yaml | |
| from typing import List, Dict | |
| from pathlib import Path | |
| import imageio | |
| import tempfile | |
| from huggingface_hub import hf_hub_download | |
| import sys | |
| import subprocess | |
| import gc | |
| import shutil | |
| import contextlib | |
| import time | |
| import traceback | |
| from einops import rearrange | |
| import torch.nn.functional as F | |
| # Singletons (versões simples) | |
| from managers.vae_manager import vae_manager_singleton | |
| from tools.video_encode_tool import video_encode_tool_singleton | |
| # --- 2. GERENCIAMENTO DE DEPENDÊNCIAS E SETUP --- | |
| def _query_gpu_processes_via_nvml(device_index: int) -> List[Dict]: | |
| try: | |
| import psutil | |
| import pynvml as nvml | |
| nvml.nvmlInit() | |
| handle = nvml.nvmlDeviceGetHandleByIndex(device_index) | |
| try: | |
| procs = nvml.nvmlDeviceGetComputeRunningProcesses_v3(handle) | |
| except Exception: | |
| procs = nvml.nvmlDeviceGetComputeRunningProcesses(handle) | |
| results = [] | |
| for p in procs: | |
| pid = int(p.pid) | |
| used_mb = None | |
| try: | |
| if getattr(p, "usedGpuMemory", None) is not None and p.usedGpuMemory not in (0,): | |
| used_mb = max(0, int(p.usedGpuMemory) // (1024 * 1024)) | |
| except Exception: | |
| used_mb = None | |
| name = "unknown" | |
| user = "unknown" | |
| try: | |
| import psutil | |
| pr = psutil.Process(pid) | |
| name = pr.name() | |
| user = pr.username() | |
| except Exception: | |
| pass | |
| results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb}) | |
| nvml.nvmlShutdown() | |
| return results | |
| except Exception: | |
| return [] | |
| def _query_gpu_processes_via_nvidiasmi(device_index: int) -> List[Dict]: | |
| cmd = f"nvidia-smi -i {device_index} --query-compute-apps=pid,process_name,used_memory --format=csv,noheader,nounits" | |
| try: | |
| out = subprocess.check_output(shlex.split(cmd), stderr=subprocess.STDOUT, text=True, timeout=2.0) | |
| except Exception: | |
| return [] | |
| results = [] | |
| for line in out.strip().splitlines(): | |
| parts = [p.strip() for p in line.split(",")] | |
| if len(parts) >= 3: | |
| try: | |
| pid = int(parts[0]); name = parts[1]; used_mb = int(parts[2]) | |
| user = "unknown" | |
| try: | |
| import psutil | |
| pr = psutil.Process(pid) | |
| user = pr.username() | |
| except Exception: | |
| pass | |
| results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb}) | |
| except Exception: | |
| continue | |
| return results | |
| def calculate_new_dimensions(orig_w, orig_h, divisor=8): | |
| """ | |
| Calcula novas dimensões mantendo a proporção, garantindo que ambos os | |
| lados sejam divisíveis pelo divisor especificado (padrão 8). | |
| """ | |
| if orig_w == 0 or orig_h == 0: | |
| # Retorna um valor padrão seguro | |
| return 512, 512 | |
| # Preserva a orientação (paisagem vs. retrato) | |
| if orig_w >= orig_h: | |
| # Paisagem ou quadrado | |
| aspect_ratio = orig_w / orig_h | |
| # Começa com uma altura base e calcula a largura | |
| new_h = 512 # Altura base para paisagem | |
| new_w = new_h * aspect_ratio | |
| else: | |
| # Retrato | |
| aspect_ratio = orig_h / orig_w | |
| # Começa com uma largura base e calcula a altura | |
| new_w = 512 # Largura base para retrato | |
| new_h = new_w * aspect_ratio | |
| # Arredonda AMBOS os valores para o múltiplo mais próximo do divisor | |
| final_w = int(round(new_w / divisor)) * divisor | |
| final_h = int(round(new_h / divisor)) * divisor | |
| # Garante que as dimensões não sejam zero após o arredondamento | |
| final_w = max(divisor, final_w) | |
| final_h = max(divisor, final_h) | |
| print(f"[Dimension Calc] Original: {orig_w}x{orig_h} -> Calculado: {new_w:.0f}x{new_h:.0f} -> Final (divisível por {divisor}): {final_w}x{final_h}") | |
| return final_h, final_w # Retorna (altura, largura) | |
| def handle_media_upload_for_dims(filepath, current_h, current_w): | |
| """ | |
| Esta função agora usará o novo cálculo robusto. | |
| (O corpo desta função não precisa de alterações, pois ela já chama a função de cálculo) | |
| """ | |
| if not filepath or not os.path.exists(str(filepath)): | |
| return gr.update(value=current_h), gr.update(value=current_w) | |
| try: | |
| if str(filepath).lower().endswith(('.png', '.jpg', '.jpeg', '.webp')): | |
| with Image.open(filepath) as img: | |
| orig_w, orig_h = img.size | |
| else: # Assumir que é um vídeo | |
| with imageio.get_reader(filepath) as reader: | |
| meta = reader.get_meta_data() | |
| orig_w, orig_h = meta.get('size', (current_w, current_h)) | |
| # Chama a nova função corrigida | |
| new_h, new_w = calculate_new_dimensions(orig_w, orig_h) | |
| return gr.update(value=new_h), gr.update(value=new_w) | |
| except Exception as e: | |
| print(f"Erro ao processar mídia para dimensões: {e}") | |
| return gr.update(value=current_h), gr.update(value=current_w) | |
| def _gpu_process_table(processes: List[Dict], current_pid: int) -> str: | |
| if not processes: | |
| return " - Processos ativos: (nenhum)\n" | |
| processes = sorted(processes, key=lambda x: (x.get("used_mb") or 0), reverse=True) | |
| lines = [" - Processos ativos (PID | USER | NAME | VRAM MB):"] | |
| for p in processes: | |
| star = "*" if p["pid"] == current_pid else " " | |
| used_str = str(p["used_mb"]) if p.get("used_mb") is not None else "N/A" | |
| lines.append(f" {star} {p['pid']} | {p['user']} | {p['name']} | {used_str}") | |
| return "\n".join(lines) + "\n" | |
| def run_setup(): | |
| setup_script_path = "setup.py" | |
| if not os.path.exists(setup_script_path): | |
| print("[DEBUG] 'setup.py' não encontrado. Pulando clonagem de dependências.") | |
| return | |
| try: | |
| print("[DEBUG] Executando setup.py para dependências...") | |
| subprocess.run([sys.executable, setup_script_path], check=True) | |
| print("[DEBUG] Setup concluído com sucesso.") | |
| except subprocess.CalledProcessError as e: | |
| print(f"[DEBUG] ERRO no setup.py (code {e.returncode}). Abortando.") | |
| sys.exit(1) | |
| from api.ltx.inference import ( | |
| create_ltx_video_pipeline, | |
| create_latent_upsampler, | |
| load_image_to_tensor_with_resize_and_crop, | |
| seed_everething, | |
| calculate_padding, | |
| load_media_file, | |
| ) | |
| DEPS_DIR = Path("/data") | |
| LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video" | |
| if not LTX_VIDEO_REPO_DIR.exists(): | |
| print(f"[DEBUG] Repositório não encontrado em {LTX_VIDEO_REPO_DIR}. Rodando setup...") | |
| run_setup() | |
| def add_deps_to_path(): | |
| repo_path = str(LTX_VIDEO_REPO_DIR.resolve()) | |
| if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path: | |
| sys.path.insert(0, repo_path) | |
| print(f"[DEBUG] Repo adicionado ao sys.path: {repo_path}") | |
| add_deps_to_path() | |
| # --- 3. IMPORTAÇÕES ESPECÍFICAS DO MODELO --- | |
| from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline | |
| from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy | |
| from ltx_video.models.autoencoders.vae_encode import un_normalize_latents, normalize_latents | |
| from ltx_video.pipelines.pipeline_ltx_video import adain_filter_latent | |
| # --- 4. FUNÇÕES HELPER DE LOG --- | |
| def log_tensor_info(tensor, name="Tensor"): | |
| if not isinstance(tensor, torch.Tensor): | |
| print(f"\n[INFO] '{name}' não é tensor.") | |
| return | |
| print(f"\n--- Tensor: {name} ---") | |
| print(f" - Shape: {tuple(tensor.shape)}") | |
| print(f" - Dtype: {tensor.dtype}") | |
| print(f" - Device: {tensor.device}") | |
| if tensor.numel() > 0: | |
| try: | |
| print(f" - Min: {tensor.min().item():.4f} Max: {tensor.max().item():.4f} Mean: {tensor.mean().item():.4f}") | |
| except Exception: | |
| pass | |
| print("------------------------------------------\n") | |
| # --- 5. CLASSE PRINCIPAL DO SERVIÇO --- | |
| class VideoService: | |
| def __init__(self): | |
| t0 = time.perf_counter() | |
| print("[DEBUG] Inicializando VideoService...") | |
| self.debug = os.getenv("LTXV_DEBUG", "1") == "1" | |
| self.frame_log_every = int(os.getenv("LTXV_FRAME_LOG_EVERY", "8")) | |
| self.config = self._load_config() | |
| print(f"[DEBUG] Config carregada (precision={self.config.get('precision')}, sampler={self.config.get('sampler')})") | |
| self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
| print(f"[DEBUG] Device selecionado: {self.device}") | |
| self.last_memory_reserved_mb = 0.0 | |
| self._tmp_dirs = set(); self._tmp_files = set(); self._last_outputs = [] | |
| self.pipeline, self.latent_upsampler = self._load_models() | |
| print(f"[DEBUG] Pipeline e Upsampler carregados. Upsampler ativo? {bool(self.latent_upsampler)}") | |
| print(f"[DEBUG] Movendo modelos para {self.device}...") | |
| self.pipeline.to(self.device) | |
| if self.latent_upsampler: | |
| self.latent_upsampler.to(self.device) | |
| self._apply_precision_policy() | |
| print(f"[DEBUG] runtime_autocast_dtype = {getattr(self, 'runtime_autocast_dtype', None)}") | |
| # Injeta pipeline/vae no manager (impede vae=None) | |
| vae_manager_singleton.attach_pipeline( | |
| self.pipeline, | |
| device=self.device, | |
| autocast_dtype=self.runtime_autocast_dtype | |
| ) | |
| print(f"[DEBUG] VAE manager conectado: has_vae={hasattr(self.pipeline, 'vae')} device={self.device}") | |
| if self.device == "cuda": | |
| torch.cuda.empty_cache() | |
| self._log_gpu_memory("Após carregar modelos") | |
| print(f"[DEBUG] VideoService pronto. boot_time={time.perf_counter()-t0:.3f}s") | |
| def _log_gpu_memory(self, stage_name: str): | |
| if self.device != "cuda": | |
| return | |
| device_index = torch.cuda.current_device() if torch.cuda.is_available() else 0 | |
| current_reserved_b = torch.cuda.memory_reserved(device_index) | |
| current_reserved_mb = current_reserved_b / (1024 ** 2) | |
| total_memory_b = torch.cuda.get_device_properties(device_index).total_memory | |
| total_memory_mb = total_memory_b / (1024 ** 2) | |
| peak_reserved_mb = torch.cuda.max_memory_reserved(device_index) / (1024 ** 2) | |
| delta_mb = current_reserved_mb - getattr(self, "last_memory_reserved_mb", 0.0) | |
| processes = _query_gpu_processes_via_nvml(device_index) or _query_gpu_processes_via_nvidiasmi(device_index) | |
| print(f"\n--- [LOG GPU] {stage_name} (cuda:{device_index}) ---") | |
| print(f" - Reservado: {current_reserved_mb:.2f} MB / {total_memory_mb:.2f} MB (Δ={delta_mb:+.2f} MB)") | |
| if peak_reserved_mb > getattr(self, "last_memory_reserved_mb", 0.0): | |
| print(f" - Pico reservado (nesta fase): {peak_reserved_mb:.2f} MB") | |
| print(_gpu_process_table(processes, os.getpid()), end="") | |
| print("--------------------------------------------------\n") | |
| self.last_memory_reserved_mb = current_reserved_mb | |
| def _register_tmp_dir(self, d: str): | |
| if d and os.path.isdir(d): | |
| self._tmp_dirs.add(d); print(f"[DEBUG] Registrado tmp dir: {d}") | |
| def _register_tmp_file(self, f: str): | |
| if f and os.path.exists(f): | |
| self._tmp_files.add(f); print(f"[DEBUG] Registrado tmp file: {f}") | |
| def finalize(self, keep_paths=None, extra_paths=None, clear_gpu=True): | |
| print("[DEBUG] Finalize: iniciando limpeza...") | |
| keep = set(keep_paths or []); extras = set(extra_paths or []) | |
| removed_files = 0 | |
| for f in list(self._tmp_files | extras): | |
| try: | |
| if f not in keep and os.path.isfile(f): | |
| os.remove(f); removed_files += 1; print(f"[DEBUG] Removido arquivo tmp: {f}") | |
| except Exception as e: | |
| print(f"[DEBUG] Falha removendo arquivo {f}: {e}") | |
| finally: | |
| self._tmp_files.discard(f) | |
| removed_dirs = 0 | |
| for d in list(self._tmp_dirs): | |
| try: | |
| if d not in keep and os.path.isdir(d): | |
| shutil.rmtree(d, ignore_errors=True); removed_dirs += 1; print(f"[DEBUG] Removido diretório tmp: {d}") | |
| except Exception as e: | |
| print(f"[DEBUG] Falha removendo diretório {d}: {e}") | |
| finally: | |
| self._tmp_dirs.discard(d) | |
| print(f"[DEBUG] Finalize: arquivos removidos={removed_files}, dirs removidos={removed_dirs}") | |
| gc.collect() | |
| try: | |
| if clear_gpu and torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| try: | |
| torch.cuda.ipc_collect() | |
| except Exception: | |
| pass | |
| except Exception as e: | |
| print(f"[DEBUG] Finalize: limpeza GPU falhou: {e}") | |
| try: | |
| self._log_gpu_memory("Após finalize") | |
| except Exception as e: | |
| print(f"[DEBUG] Log GPU pós-finalize falhou: {e}") | |
| def _load_config(self): | |
| base = LTX_VIDEO_REPO_DIR / "configs" | |
| candidates = [ | |
| base / "ltxv-13b-0.9.8-dev-fp8.yaml", | |
| base / "ltxv-13b-0.9.8-distilled-fp8.yaml", | |
| base / "ltxv-13b-0.9.8-distilled.yaml", | |
| ] | |
| for cfg in candidates: | |
| if cfg.exists(): | |
| print(f"[DEBUG] Config selecionada: {cfg}") | |
| with open(cfg, "r") as file: | |
| return yaml.safe_load(file) | |
| cfg = base / "ltxv-13b-0.9.8-distilled-fp8.yaml" | |
| print(f"[DEBUG] Config fallback: {cfg}") | |
| with open(cfg, "r") as file: | |
| return yaml.safe_load(file) | |
| def _load_models(self): | |
| """ | |
| Carrega os modelos de forma inteligente: | |
| 1. Tenta resolver o caminho do cache local (rápido, sem rede). | |
| 2. Se o arquivo não for encontrado localmente, baixa como fallback. | |
| Garante que o serviço possa iniciar mesmo que o setup.py não tenha sido executado. | |
| """ | |
| t0 = time.perf_counter() | |
| LTX_REPO = "Lightricks/LTX-Video" | |
| print("[DEBUG] Resolvendo caminhos dos modelos de forma inteligente...") | |
| # --- Função Auxiliar para Carregamento Inteligente --- | |
| def get_or_download_model(repo_id, filename, description): | |
| try: | |
| # hf_hub_download é a ferramenta certa aqui. Ela verifica o cache PRIMEIRO. | |
| # Se o arquivo estiver no cache, retorna o caminho instantaneamente (após uma verificação rápida de metadados). | |
| # Se não estiver no cache, ela o baixa. | |
| print(f"[DEBUG] Verificando {description}: {filename}...") | |
| model_path = hf_hub_download( | |
| repo_id=repo_id, | |
| filename=filename, | |
| # Forçar o uso de um cache específico se necessário | |
| cache_dir=os.getenv("HF_HOME_CACHE"), | |
| token=os.getenv("HF_TOKEN") | |
| ) | |
| print(f"[DEBUG] Caminho do {description} resolvido com sucesso.") | |
| return model_path | |
| except Exception as e: | |
| print("\n" + "="*80) | |
| print(f"[ERRO CRÍTICO] Falha ao obter o modelo '{filename}'.") | |
| print(f"Detalhe do erro: {e}") | |
| print("Verifique sua conexão com a internet ou o estado do cache do Hugging Face.") | |
| print("="*80 + "\n") | |
| sys.exit(1) | |
| # --- Checkpoint Principal --- | |
| checkpoint_filename = self.config["checkpoint_path"] | |
| distilled_model_path = get_or_download_model( | |
| LTX_REPO, checkpoint_filename, "checkpoint principal" | |
| ) | |
| self.config["checkpoint_path"] = distilled_model_path | |
| # --- Upscaler Espacial --- | |
| upscaler_filename = self.config["spatial_upscaler_model_path"] | |
| spatial_upscaler_path = get_or_download_model( | |
| LTX_REPO, upscaler_filename, "upscaler espacial" | |
| ) | |
| self.config["spatial_upscaler_model_path"] = spatial_upscaler_path | |
| # --- Construção dos Pipelines --- | |
| print("\n[DEBUG] Construindo pipeline a partir dos caminhos resolvidos...") | |
| pipeline = create_ltx_video_pipeline( | |
| ckpt_path=self.config["checkpoint_path"], | |
| precision=self.config["precision"], | |
| text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"], | |
| sampler=self.config["sampler"], | |
| device="cpu", | |
| enhance_prompt=False, | |
| prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"], | |
| prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"], | |
| ) | |
| print("[DEBUG] Pipeline pronto.") | |
| latent_upsampler = None | |
| if self.config.get("spatial_upscaler_model_path"): | |
| print("[DEBUG] Construindo latent_upsampler...") | |
| latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu") | |
| print("[DEBUG] Upsampler pronto.") | |
| print(f"[DEBUG] _load_models() tempo total={time.perf_counter()-t0:.3f}s") | |
| return pipeline, latent_upsampler | |
| def _load_models_old(self): | |
| t0 = time.perf_counter() | |
| LTX_REPO = "Lightricks/LTX-Video" | |
| print("[DEBUG] Baixando checkpoint principal...") | |
| distilled_model_path = hf_hub_download( | |
| repo_id=LTX_REPO, | |
| filename=self.config["checkpoint_path"], | |
| local_dir=os.getenv("HF_HOME"), | |
| cache_dir=os.getenv("HF_HOME_CACHE"), | |
| token=os.getenv("HF_TOKEN"), | |
| ) | |
| self.config["checkpoint_path"] = distilled_model_path | |
| print(f"[DEBUG] Checkpoint em: {distilled_model_path}") | |
| print("[DEBUG] Baixando upscaler espacial...") | |
| spatial_upscaler_path = hf_hub_download( | |
| repo_id=LTX_REPO, | |
| filename=self.config["spatial_upscaler_model_path"], | |
| local_dir=os.getenv("HF_HOME"), | |
| cache_dir=os.getenv("HF_HOME_CACHE"), | |
| token=os.getenv("HF_TOKEN") | |
| ) | |
| self.config["spatial_upscaler_model_path"] = spatial_upscaler_path | |
| print(f"[DEBUG] Upscaler em: {spatial_upscaler_path}") | |
| print("[DEBUG] Construindo pipeline...") | |
| pipeline = create_ltx_video_pipeline( | |
| ckpt_path=self.config["checkpoint_path"], | |
| precision=self.config["precision"], | |
| text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"], | |
| sampler=self.config["sampler"], | |
| device="cpu", | |
| enhance_prompt=False, | |
| prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"], | |
| prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"], | |
| ) | |
| print("[DEBUG] Pipeline pronto.") | |
| latent_upsampler = None | |
| if self.config.get("spatial_upscaler_model_path"): | |
| print("[DEBUG] Construindo latent_upsampler...") | |
| latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu") | |
| print("[DEBUG] Upsampler pronto.") | |
| print(f"[DEBUG] _load_models() tempo total={time.perf_counter()-t0:.3f}s") | |
| return pipeline, latent_upsampler | |
| def _promote_fp8_weights_to_bf16(self, module): | |
| if not isinstance(module, torch.nn.Module): | |
| print("[DEBUG] Promoção FP8→BF16 ignorada: alvo não é nn.Module.") | |
| return | |
| f8 = getattr(torch, "float8_e4m3fn", None) | |
| if f8 is None: | |
| print("[DEBUG] torch.float8_e4m3fn indisponível.") | |
| return | |
| p_cnt = b_cnt = 0 | |
| for _, p in module.named_parameters(recurse=True): | |
| try: | |
| if p.dtype == f8: | |
| with torch.no_grad(): | |
| p.data = p.data.to(torch.bfloat16); p_cnt += 1 | |
| except Exception: | |
| pass | |
| for _, b in module.named_buffers(recurse=True): | |
| try: | |
| if hasattr(b, "dtype") and b.dtype == f8: | |
| b.data = b.data.to(torch.bfloat16); b_cnt += 1 | |
| except Exception: | |
| pass | |
| print(f"[DEBUG] FP8→BF16: params_promoted={p_cnt}, buffers_promoted={b_cnt}") | |
| def _upsample_latents_internal(self, latents: torch.Tensor) -> torch.Tensor: | |
| """ | |
| Lógica extraída diretamente da LTXMultiScalePipeline para upscale de latentes. | |
| """ | |
| if not self.latent_upsampler: | |
| raise ValueError("Latent Upsampler não está carregado.") | |
| # Garante que os modelos estejam no dispositivo correto | |
| self.latent_upsampler.to(self.device) | |
| self.pipeline.vae.to(self.device) | |
| print(f"[DEBUG-UPSAMPLE] Shape de entrada: {tuple(latents.shape)}") | |
| latents = un_normalize_latents(latents, self.pipeline.vae, vae_per_channel_normalize=True) | |
| upsampled_latents = self.latent_upsampler(latents) | |
| upsampled_latents = normalize_latents(upsampled_latents, self.pipeline.vae, vae_per_channel_normalize=True) | |
| print(f"[DEBUG-UPSAMPLE] Shape de saída: {tuple(upsampled_latents.shape)}") | |
| return upsampled_latents | |
| def _apply_precision_policy(self): | |
| prec = str(self.config.get("precision", "")).lower() | |
| self.runtime_autocast_dtype = torch.float32 | |
| print(f"[DEBUG] Aplicando política de precisão: {prec}") | |
| if prec == "float8_e4m3fn": | |
| self.runtime_autocast_dtype = torch.bfloat16 | |
| force_promote = os.getenv("LTXV_FORCE_BF16_ON_FP8", "0") == "1" | |
| print(f"[DEBUG] FP8 detectado. force_promote={force_promote}") | |
| if force_promote and hasattr(torch, "float8_e4m3fn"): | |
| try: | |
| self._promote_fp8_weights_to_bf16(self.pipeline) | |
| except Exception as e: | |
| print(f"[DEBUG] Promoção FP8→BF16 na pipeline falhou: {e}") | |
| try: | |
| if self.latent_upsampler: | |
| self._promote_fp8_weights_to_bf16(self.latent_upsampler) | |
| except Exception as e: | |
| print(f"[DEBUG] Promoção FP8→BF16 no upsampler falhou: {e}") | |
| elif prec == "bfloat16": | |
| self.runtime_autocast_dtype = torch.bfloat16 | |
| elif prec == "mixed_precision": | |
| self.runtime_autocast_dtype = torch.float16 | |
| else: | |
| self.runtime_autocast_dtype = torch.float32 | |
| def _prepare_conditioning_tensor(self, filepath, height, width, padding_values): | |
| print(f"[DEBUG] Carregando condicionamento: {filepath}") | |
| tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width) | |
| tensor = torch.nn.functional.pad(tensor, padding_values) | |
| out = tensor.to(self.device, dtype=self.runtime_autocast_dtype) if self.device == "cuda" else tensor.to(self.device) | |
| print(f"[DEBUG] Cond shape={tuple(out.shape)} dtype={out.dtype} device={out.device}") | |
| return out | |
| def _dividir_latentes_por_tamanho(self, latents_brutos, num_latente_por_chunk: int, overlap: int = 1): | |
| """ | |
| Divide o tensor de latentes em chunks com tamanho definido em número de latentes. | |
| Args: | |
| latents_brutos: tensor [B, C, T, H, W] | |
| num_latente_por_chunk: número de latentes por chunk | |
| overlap: número de frames que se sobrepõem entre chunks | |
| Returns: | |
| List[tensor]: lista de chunks cloneados | |
| """ | |
| sum_latent = latents_brutos.shape[2] | |
| chunks = [] | |
| if num_latente_por_chunk >= sum_latent: | |
| return [latents_brutos] | |
| n_chunks = (sum_latent) // num_latente_por_chunk | |
| steps = sum_latent//n_chunks | |
| print("==========PODA CAUSAL[start:stop-1]==========") | |
| print(f"[DEBUG] TOTAL LATENTES = {sum_latent}") | |
| print(f"[DEBUG] LATENTES min por chunk = {num_latente_por_chunk}") | |
| print(f"[DEBUG] Número de chunks = {n_chunks}") | |
| if n_chunks > 1: | |
| i=0 | |
| while i < n_chunks: | |
| if i>0: | |
| dow=0 | |
| else: | |
| dow=0 | |
| start = (num_latente_por_chunk*i) | |
| end = (start+num_latente_por_chunk+(overlap+1)) | |
| if i+1 < n_chunks: | |
| chunk = latents_brutos[:, :, start-(dow):end, :, :].clone().detach() | |
| print(f"[DEBUG] chunk{i+1}[:, :, {start-dow}:{end}, :, :] = {chunk.shape[2]}") | |
| else: | |
| chunk = latents_brutos[:, :, start-(dow):, :, :].clone().detach() | |
| print(f"[DEBUG] chunk{i+1}[:, :, {start-(dow)}:, :, :] = {chunk.shape[2]}") | |
| chunks.append(chunk) | |
| i+=1 | |
| else: | |
| print(f"[DEBUG] numero chunks minimo ") | |
| print(f"[DEBUG] latents_brutos[:, :, :, :, :] = {latents_brutos.shape[2]}") | |
| chunks.append(latents_brutos) | |
| print("\n\n================PODA CAUSAL=================") | |
| return chunks | |
| def _get_total_frames(self, video_path: str) -> int: | |
| cmd = [ | |
| "ffprobe", | |
| "-v", "error", | |
| "-select_streams", "v:0", | |
| "-count_frames", | |
| "-show_entries", "stream=nb_read_frames", | |
| "-of", "default=nokey=1:noprint_wrappers=1", | |
| video_path | |
| ] | |
| result = subprocess.run(cmd, capture_output=True, text=True, check=True) | |
| return int(result.stdout.strip()) | |
| def _gerar_lista_com_transicoes(self, pasta: str, video_paths: list[str], crossfade_frames: int = 8) -> list[str]: | |
| """ | |
| Gera uma nova lista de vídeos aplicando transições suaves (blend frame a frame) | |
| seguindo exatamente a lógica linear de Carlos. | |
| """ | |
| import os, subprocess, shutil | |
| poda = crossfade_frames | |
| total_partes = len(video_paths) | |
| video_fade_fim = None | |
| video_fade_ini = None | |
| nova_lista = [] | |
| if crossfade_frames == 0: | |
| print("\n\n[DEBUG] CROSSFADE_FRAMES=0 Ship concatenation causal") | |
| return video_paths | |
| print("\n\n===========CONCATECAO CAUSAL=============") | |
| print(f"[DEBUG] Iniciando pipeline com {total_partes} vídeos e {poda} frames de crossfade") | |
| for i in range(total_partes): | |
| base = video_paths[i] | |
| # --- PODA --- | |
| video_podado = os.path.join(pasta, f"{base}_podado_{i}.mp4") | |
| if i<total_partes-1: | |
| end_frame = self._get_total_frames(base) - poda | |
| else: | |
| end_frame = self._get_total_frames(base) | |
| if i>0: | |
| start_frame = poda | |
| else: | |
| start_frame = 0 | |
| cmd_fim = ( | |
| f'ffmpeg -y -hide_banner -loglevel error -i "{base}" ' | |
| f'-vf "trim=start_frame={start_frame}:end_frame={end_frame},setpts=PTS-STARTPTS" ' | |
| f'-an "{video_podado}"' | |
| ) | |
| subprocess.run(cmd_fim, shell=True, check=True) | |
| # --- FADE_INI --- | |
| if i > 0: | |
| video_fade_ini = os.path.join(pasta, f"{base}_fade_ini_{i}.mp4") | |
| cmd_ini = ( | |
| f'ffmpeg -y -hide_banner -loglevel error -i "{base}" ' | |
| f'-vf "trim=end_frame={poda},setpts=PTS-STARTPTS" -an "{video_fade_ini}"' | |
| ) | |
| subprocess.run(cmd_ini, shell=True, check=True) | |
| # --- TRANSIÇÃO --- | |
| if video_fade_fim and video_fade_ini: | |
| video_fade = os.path.join(pasta, f"transicao_{i}_{i+1}.mp4") | |
| cmd_blend = ( | |
| f'ffmpeg -y -hide_banner -loglevel error ' | |
| f'-i "{video_fade_fim}" -i "{video_fade_ini}" ' | |
| f'-filter_complex "[0:v][1:v]blend=all_expr=\'A*(1-T/{poda})+B*(T/{poda})\',format=yuv420p" ' | |
| f'-frames:v {poda} "{video_fade}"' | |
| ) | |
| subprocess.run(cmd_blend, shell=True, check=True) | |
| print(f"[DEBUG] transicao adicionada {i}/{i+1} {self._get_total_frames(video_fade)} frames ✅") | |
| nova_lista.append(video_fade) | |
| # --- FADE_FIM --- | |
| if i<=total_partes-1: | |
| video_fade_fim = os.path.join(pasta, f"{base}_fade_fim_{i}.mp4") | |
| cmd_fim = ( | |
| f'ffmpeg -y -hide_banner -loglevel error -i "{base}" ' | |
| f'-vf "trim=start_frame={end_frame-poda},setpts=PTS-STARTPTS" -an "{video_fade_fim}"' | |
| ) | |
| subprocess.run(cmd_fim, shell=True, check=True) | |
| nova_lista.append(video_podado) | |
| print(f"[DEBUG] Video podado {i+1} adicionado {self._get_total_frames(video_podado)} frames ✅") | |
| print("===========CONCATECAO CAUSAL=============") | |
| print(f"[DEBUG] {nova_lista}") | |
| return nova_lista | |
| def _concat_mp4s_no_reencode(self, mp4_list: List[str], out_path: str): | |
| """ | |
| Concatena múltiplos MP4s sem reencode usando o demuxer do ffmpeg. | |
| ATENÇÃO: todos os arquivos precisam ter mesmo codec, fps, resolução etc. | |
| """ | |
| if not mp4_list or len(mp4_list) < 2: | |
| raise ValueError("Forneça pelo menos dois arquivos MP4 para concatenar.") | |
| # Cria lista temporária para o ffmpeg | |
| with tempfile.NamedTemporaryFile("w", delete=False, suffix=".txt") as f: | |
| for mp4 in mp4_list: | |
| f.write(f"file '{os.path.abspath(mp4)}'\n") | |
| list_path = f.name | |
| cmd = f"ffmpeg -y -f concat -safe 0 -i {list_path} -c copy {out_path}" | |
| print(f"[DEBUG] Concat: {cmd}") | |
| try: | |
| subprocess.check_call(shlex.split(cmd)) | |
| finally: | |
| try: | |
| os.remove(list_path) | |
| except Exception: | |
| pass | |
| # ============================================================================== | |
| # --- FUNÇÃO GENERATE COMPLETA E ATUALIZADA --- | |
| # ============================================================================== | |
| def generate( | |
| self, | |
| prompt, | |
| negative_prompt, | |
| mode="text-to-video", | |
| start_image_filepath=None, | |
| middle_image_filepath=None, | |
| middle_frame_number=None, | |
| middle_image_weight=1.0, | |
| end_image_filepath=None, | |
| end_image_weight=1.0, | |
| input_video_filepath=None, | |
| height=512, | |
| width=704, | |
| duration=2.0, | |
| frames_to_use=9, | |
| seed=42, | |
| randomize_seed=True, | |
| guidance_scale=3.0, | |
| improve_texture=True, | |
| progress_callback=None, | |
| external_decode=True, | |
| ): | |
| t_all = time.perf_counter() | |
| print(f"[DEBUG] generate() begin mode={mode} external_decode={external_decode} improve_texture={improve_texture}") | |
| if self.device == "cuda": | |
| torch.cuda.empty_cache(); torch.cuda.reset_peak_memory_stats() | |
| self._log_gpu_memory("Início da Geração") | |
| # --- Setup Inicial (como antes) --- | |
| if mode == "image-to-video" and not start_image_filepath: | |
| raise ValueError("A imagem de início é obrigatória para o modo image-to-video") | |
| used_seed = random.randint(0, 2**32 - 1) if randomize_seed else int(seed) | |
| seed_everething(used_seed); print(f"[DEBUG] Seed usado: {used_seed}") | |
| FPS = 24.0; MAX_NUM_FRAMES = 2570 | |
| target_frames_rounded = round(duration * FPS) | |
| n_val = round((float(target_frames_rounded) - 1.0) / 8.0) | |
| actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(n_val * 8 + 1))) | |
| height_padded = ((height - 1) // 8 + 1) * 8 | |
| width_padded = ((width - 1) // 8 + 1) * 8 | |
| padding_values = calculate_padding(height, width, height_padded, width_padded) | |
| generator = torch.Generator(device=self.device).manual_seed(used_seed) | |
| conditioning_items = [] | |
| if mode == "image-to-video": | |
| start_tensor = self._prepare_conditioning_tensor(start_image_filepath, height, width, padding_values) | |
| conditioning_items.append(ConditioningItem(start_tensor, 0, 1.0)) | |
| if middle_image_filepath and middle_frame_number is not None: | |
| middle_tensor = self._prepare_conditioning_tensor(middle_image_filepath, height, width, padding_values) | |
| safe_middle_frame = max(0, min(int(middle_frame_number), actual_num_frames - 1)) | |
| conditioning_items.append(ConditioningItem(middle_tensor, safe_middle_frame, float(middle_image_weight))) | |
| if end_image_filepath: | |
| end_tensor = self._prepare_conditioning_tensor(end_image_filepath, height, width, padding_values) | |
| last_frame_index = actual_num_frames - 1 | |
| conditioning_items.append(ConditioningItem(end_tensor, last_frame_index, float(end_image_weight))) | |
| print(f"[DEBUG] Conditioning items: {len(conditioning_items)}") | |
| call_kwargs = { | |
| "prompt": prompt, | |
| "negative_prompt": negative_prompt, | |
| "height": height_padded, | |
| "width": width_padded, | |
| "num_frames": actual_num_frames, | |
| "frame_rate": int(FPS), | |
| "generator": generator, | |
| "output_type": "latent", | |
| "conditioning_items": conditioning_items if conditioning_items else None, | |
| "media_items": None, | |
| "decode_timestep": self.config["decode_timestep"], | |
| "decode_noise_scale": self.config["decode_noise_scale"], | |
| "stochastic_sampling": self.config["stochastic_sampling"], | |
| "image_cond_noise_scale": 0.01, | |
| "is_video": True, | |
| "vae_per_channel_normalize": True, | |
| "mixed_precision": (self.config["precision"] == "mixed_precision"), | |
| "offload_to_cpu": False, | |
| "enhance_prompt": False, | |
| "skip_layer_strategy": SkipLayerStrategy.AttentionValues, | |
| } | |
| latents = None | |
| latents_list = [] | |
| results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True) | |
| try: | |
| ctx = torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype) if self.device == "cuda" else contextlib.nullcontext() | |
| with ctx: | |
| if improve_texture: | |
| if not self.latent_upsampler: | |
| raise ValueError("Upscaler espacial não carregado, mas 'improve_texture' está ativo.") | |
| first_pass_kwargs = call_kwargs.copy() | |
| # --- ETAPA 1: GERAÇÃO BASE (FIRST PASS) --- | |
| print("\n--- INICIANDO ETAPA 1: GERAÇÃO BASE (FIRST PASS) ---") | |
| t_pass1 = time.perf_counter() | |
| first_pass_config = self.config.get("first_pass", {}).copy() | |
| downscale_factor = self.config.get("downscale_factor", 0.6666666) | |
| vae_scale_factor = self.pipeline.vae_scale_factor # Geralmente 8 | |
| x_width = int(width_padded * downscale_factor) | |
| downscaled_width = x_width - (x_width % vae_scale_factor) | |
| x_height = int(height_padded * downscale_factor) | |
| downscaled_height = x_height - (x_height % vae_scale_factor) | |
| print(f"[DEBUG] First Pass Dims: Original Pad ({width_padded}x{height_padded}) -> Downscaled ({downscaled_width}x{downscaled_height})") | |
| first_pass_kwargs.update({ | |
| **first_pass_config | |
| }) | |
| first_pass_kwargs.update({ | |
| "output_type": "latent", | |
| "width": downscaled_width, | |
| "height": downscaled_height, | |
| "guidance_scale": float(guidance_scale), | |
| }) | |
| print(f"[DEBUG] First Pass: Gerando em {downscaled_width}x{downscaled_height}...") | |
| base_latents = self.pipeline(**first_pass_kwargs).images | |
| log_tensor_info(base_latents, "Latentes Base (First Pass)") | |
| print(f"[DEBUG] First Pass concluída em {time.perf_counter() - t_pass1:.2f}s") | |
| # --- ETAPA 2: UPSCALE DOS LATENTES --- | |
| print("\n--- INICIANDO ETAPA 2: UPSCALE DOS LATENTES ---") | |
| t_upscale = time.perf_counter() | |
| upsampled_latents = self._upsample_latents_internal(base_latents) | |
| upsampled_latents = adain_filter_latent(latents=upsampled_latents, reference_latents=base_latents) | |
| log_tensor_info(upsampled_latents, "Latentes Pós-Upscale") | |
| print(f"[DEBUG] Upscale de Latentes concluído em {time.perf_counter() - t_upscale:.2f}s") | |
| del base_latents; gc.collect(); torch.cuda.empty_cache() | |
| par = 0 | |
| latents_cpu_up = upsampled_latents.detach().to("cpu", non_blocking=True) | |
| torch.cuda.empty_cache() | |
| try: | |
| torch.cuda.ipc_collect() | |
| except Exception: | |
| pass | |
| latents_parts_up = self._dividir_latentes_por_tamanho(latents_cpu_up,40,0) | |
| print("\n\n--- INICIANDO ETAPA 3: REFINAMENTO DE TEXTURA (SECOND PASS) ---") | |
| cc = 1 | |
| for latents in latents_parts_up: | |
| t_pass2 = time.perf_counter() | |
| print("\n\n#########################################") | |
| # # --- ETAPA 3: REFINAMENTO DE TEXTURA (SECOND PASS) --- | |
| print(f"\n--- INICIANDO ETAPA 3/{cc} ") | |
| second_pass_kwargs = first_pass_config.copy() | |
| second_pass_config = self.config.get("second_pass", {}).copy() | |
| second_pass_width = downscaled_width * 2 | |
| second_pass_height = downscaled_height * 2 | |
| print(f"[DEBUG] Second Pass Dims: Target ({second_pass_width}x{second_pass_height})") | |
| num_latent_frames_part = latents.shape[2] | |
| log_tensor_info(latents, "Latentes input (Pre-Pós-Second Pass)") | |
| vae_temporal_scale = self.pipeline.video_scale_factor # Geralmente 4 ou 8 | |
| num_pixel_frames_part = ((num_latent_frames_part - 1) * vae_temporal_scale) + 1 | |
| print(f"[DEBUG] Parte: {num_latent_frames_part - 1} latentes -> {num_pixel_frames_part} frames de pixel (alvo)") | |
| second_pass_kwargs.update({ | |
| **second_pass_config | |
| }) | |
| second_pass_kwargs.update({ | |
| "output_type": "latent", | |
| "width": second_pass_width, | |
| "height": second_pass_height, | |
| "num_frames": num_pixel_frames_part, | |
| "latents": latents, # O tensor upscaled | |
| "guidance_scale": float(guidance_scale), | |
| }) | |
| print(f"[DEBUG] Second Pass: Refinando em {width_padded}x{height_padded}...") | |
| final_latents = self.pipeline(**second_pass_kwargs).images | |
| log_tensor_info(final_latents, "Latentes Finais (Pós-Second Pass)") | |
| print(f"[DEBUG] Second part Pass concluída em {time.perf_counter() - t_pass2:.2f}s") | |
| latents_list.append(final_latents) | |
| cc+=1 | |
| print("#########################################") | |
| print("\n\n--- FIM ETAPA 3: REFINAMENTO DE TEXTURA (SECOND PASS) ---") | |
| else: # Geração de etapa única | |
| print("\n--- INICIANDO GERAÇÃO DE ETAPA ÚNICA ---") | |
| t_single = time.perf_counter() | |
| single_pass_kwargs = call_kwargs.copy() | |
| single_pass_kwargs.update(self.config.get("first_pass", {})) | |
| single_pass_kwargs["guidance_scale"] = float(guidance_scale) | |
| single_pass_kwargs["output_type"] = "latent" | |
| # Remove keys that might conflict or are not used in single pass / handled by above | |
| single_pass_kwargs.pop("num_inference_steps", None) | |
| single_pass_kwargs.pop("first_pass", None) | |
| single_pass_kwargs.pop("second_pass", None) | |
| single_pass_kwargs.pop("downscale_factor", None) | |
| latents = self.pipeline(**single_pass_kwargs).images | |
| log_tensor_info(latents, "Latentes Finais (Etapa Única)") | |
| print(f"[DEBUG] Etapa única concluída em {time.perf_counter() - t_single:.2f}s") | |
| latents_list.append(latents) | |
| # --- ETAPA FINAL: DECODIFICAÇÃO E CODIFICAÇÃO MP4 --- | |
| print("\n--- INICIANDO ETAPA FINAL: DECODIFICAÇÃO E MONTAGEM ---") | |
| temp_dir = tempfile.mkdtemp(prefix="ltxv_"); self._register_tmp_dir(temp_dir) | |
| results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True) | |
| partes_mp4 = [] | |
| par = 0 | |
| for latents_vae in latents_list: | |
| latents_cpu_vae = latents_vae.detach().to("cpu", non_blocking=True) | |
| torch.cuda.empty_cache() | |
| try: | |
| torch.cuda.ipc_collect() | |
| except Exception: | |
| pass | |
| latents_parts_vae = self._dividir_latentes_por_tamanho(latents_cpu_vae,4,1) | |
| for latents in latents_parts_vae: | |
| print(f"[DEBUG] Partição {par}: {tuple(latents.shape)}") | |
| par = par + 1 | |
| output_video_path = os.path.join(temp_dir, f"output_{used_seed}_{par}.mp4") | |
| final_output_path = None | |
| print("[DEBUG] Decodificando bloco de latentes com VAE → tensor de pixels...") | |
| # Usar manager com timestep por item; previne target_shape e rota NoneType.decode | |
| pixel_tensor = vae_manager_singleton.decode( | |
| latents.to(self.device, non_blocking=True), | |
| decode_timestep=float(self.config.get("decode_timestep", 0.05)) | |
| ) | |
| log_tensor_info(pixel_tensor, "Pixel tensor (VAE saída)") | |
| print("[DEBUG] Codificando MP4 a partir do tensor de pixels (bloco inteiro)...") | |
| video_encode_tool_singleton.save_video_from_tensor( | |
| pixel_tensor, | |
| output_video_path, | |
| fps=call_kwargs["frame_rate"], | |
| progress_callback=progress_callback | |
| ) | |
| candidate = os.path.join(results_dir, f"output_par_{par}.mp4") | |
| try: | |
| shutil.move(output_video_path, candidate) | |
| final_output_path = candidate | |
| print(f"[DEBUG] MP4 parte {par} movido para {final_output_path}") | |
| partes_mp4.append(final_output_path) | |
| except Exception as e: | |
| final_output_path = output_video_path | |
| print(f"[DEBUG] Falha no move; usando tmp como final: {e}") | |
| total_partes = len(partes_mp4) | |
| if (total_partes>1): | |
| final_vid = os.path.join(results_dir, f"concat_fim_{used_seed}.mp4") | |
| partes_mp4_fade = self._gerar_lista_com_transicoes(pasta=results_dir, video_paths=partes_mp4, crossfade_frames=0) | |
| self._concat_mp4s_no_reencode(partes_mp4_fade, final_vid) | |
| else: | |
| final_vid = partes_mp4[0] | |
| self._log_gpu_memory("Fim da Geração") | |
| return final_vid, used_seed | |
| except Exception as e: | |
| print("[DEBUG] EXCEÇÃO NA GERAÇÃO:") | |
| print("".join(traceback.format_exception(type(e), e, e.__traceback__))) | |
| raise | |
| finally: | |
| try: | |
| del latents | |
| except Exception: | |
| pass | |
| try: | |
| del multi_scale_pipeline | |
| except Exception: | |
| pass | |
| gc.collect() | |
| try: | |
| if self.device == "cuda": | |
| torch.cuda.empty_cache() | |
| try: | |
| torch.cuda.ipc_collect() | |
| except Exception: | |
| pass | |
| except Exception as e: | |
| print(f"[DEBUG] Limpeza GPU no finally falhou: {e}") | |
| try: | |
| self.finalize(keep_paths=[]) | |
| except Exception as e: | |
| print(f"[DEBUG] finalize() no finally falhou: {e}") | |
| print("Criando instância do VideoService. O carregamento do modelo começará agora...") | |
| video_generation_service = VideoService() |