Test / api /ltx /ltx_utils.py
eeuuia's picture
Update api/ltx/ltx_utils.py
85dbcff verified
raw
history blame
13.3 kB
# FILE: api/ltx/ltx_utils.py
# DESCRIPTION: A pure utility library for the LTX ecosystem.
# Contains the official low-level builder function for the complete pipeline
# and other stateless helper functions.
import os
import random
import json
import logging
import sys
from pathlib import Path
from typing import Dict, Tuple, Union
import torchvision.transforms.functional as TVF
from PIL import Image
import torch
from safetensors import safe_open
from transformers import T5EncoderModel, T5Tokenizer
# ==============================================================================
# --- CONFIGURAÇÃO DE PATH E IMPORTS DA BIBLIOTECA LTX ---
# ==============================================================================
LTX_VIDEO_REPO_DIR = Path("/data/LTX-Video")
def add_deps_to_path():
"""Adiciona o diretório do repositório LTX ao sys.path para importação de suas bibliotecas."""
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
if repo_path not in sys.path:
sys.path.insert(0, repo_path)
logging.info(f"[ltx_utils] LTX-Video repository added to sys.path: {repo_path}")
add_deps_to_path()
try:
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from ltx_video.models.transformers.transformer3d import Transformer3DModel
from ltx_video.models.transformers.symmetric_patchifier import SymmetricPatchifier
from ltx_video.schedulers.rf import RectifiedFlowScheduler
except ImportError as e:
logging.critical("Failed to import a core LTX-Video library component.", exc_info=True)
raise ImportError(f"Could not import from LTX-Video library. Check repo integrity at '{LTX_VIDEO_REPO_DIR}'. Error: {e}")
# ==============================================================================
# --- FUNÇÃO HELPER 'create_transformer' (Essencial) ---
# ==============================================================================
def create_transformer(ckpt_path: str, precision: str) -> Transformer3DModel:
"""
Cria e carrega o modelo Transformer3D com a lógica de precisão correta,
incluindo suporte para a otimização float8_e4m3fn.
"""
if precision == "float8_e4m3fn":
try:
from q8_kernels.integration.patch_transformer import patch_diffusers_transformer as patch_transformer_for_q8_kernels
transformer = Transformer3DModel.from_pretrained(ckpt_path, dtype=torch.float8_e4m3fn)
patch_transformer_for_q8_kernels(transformer)
return transformer
except ImportError:
raise ValueError("Q8-Kernels not found. To use FP8 checkpoint, please install Q8 kernels from the project's wheels.")
elif precision == "bfloat16":
return Transformer3DModel.from_pretrained(ckpt_path).to(torch.bfloat16)
else:
return Transformer3DModel.from_pretrained(ckpt_path)
# ==============================================================================
# --- BUILDER DE BAIXO NÍVEL OFICIAL ---
# ==============================================================================
def build_complete_pipeline_on_cpu(checkpoint_path: str, config: Dict) -> LTXVideoPipeline:
"""
Constrói o pipeline LTX COMPLETO, incluindo o VAE, e o mantém na CPU.
Esta é a função de construção fundamental usada pelo LTXAducManager.
"""
logging.info(f"Building complete LTX pipeline from checkpoint: {Path(checkpoint_path).name}")
with safe_open(checkpoint_path, framework="pt") as f:
metadata = f.metadata() or {}
config_str = metadata.get("config", "{}")
allowed_inference_steps = json.loads(config_str).get("allowed_inference_steps")
precision = config.get("precision", "bfloat16")
# Usa a função helper correta para criar o transformer
transformer = create_transformer(checkpoint_path, precision).to("cpu")
scheduler = RectifiedFlowScheduler.from_pretrained(checkpoint_path)
text_encoder = T5EncoderModel.from_pretrained(config["text_encoder_model_name_or_path"], subfolder="text_encoder").to("cpu")
tokenizer = T5Tokenizer.from_pretrained(config["text_encoder_model_name_or_path"], subfolder="tokenizer")
patchifier = SymmetricPatchifier(patch_size=1)
vae = CausalVideoAutoencoder.from_pretrained(checkpoint_path).to("cpu")
if precision == "bfloat16":
text_encoder.to(torch.bfloat16)
vae.to(torch.bfloat16)
# O transformer já foi convertido para bfloat16 dentro de create_transformer, se aplicável
pipeline = LTXVideoPipeline(
transformer=transformer,
patchifier=patchifier,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
vae=vae, # VAE é incluído para que o pipeline possa ser auto-suficiente
allowed_inference_steps=allowed_inference_steps,
prompt_enhancer_image_caption_model=None,
prompt_enhancer_image_caption_processor=None,
prompt_enhancer_llm_model=None,
prompt_enhancer_llm_tokenizer=None,
)
return pipeline
# ==============================================================================
# --- FUNÇÕES AUXILIARES GENÉRICAS ---
# ==============================================================================
# # FILE: api/ltx/ltx_utils.py
# DESCRIPTION: A pure utility library for the LTX ecosystem.
# Contains the official low-level builder function for the complete pipeline
# and other stateless helper functions.
import os
import random
import json
import logging
import sys
from pathlib import Path
from typing import Dict, Tuple
import torch
from safetensors import safe_open
from transformers import T5EncoderModel, T5Tokenizer
# ==============================================================================
# --- CONFIGURAÇÃO DE PATH E IMPORTS DA BIBLIOTECA LTX ---
# ==============================================================================
LTX_VIDEO_REPO_DIR = Path("/data/LTX-Video")
def add_deps_to_path():
"""Adiciona o diretório do repositório LTX ao sys.path para importação de suas bibliotecas."""
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
if repo_path not in sys.path:
sys.path.insert(0, repo_path)
logging.info(f"[ltx_utils] LTX-Video repository added to sys.path: {repo_path}")
add_deps_to_path()
try:
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from ltx_video.models.transformers.transformer3d import Transformer3DModel
from ltx_video.models.transformers.symmetric_patchifier import SymmetricPatchifier
from ltx_video.schedulers.rf import RectifiedFlowScheduler
except ImportError as e:
logging.critical("Failed to import a core LTX-Video library component.", exc_info=True)
raise ImportError(f"Could not import from LTX-Video library. Check repo integrity at '{LTX_VIDEO_REPO_DIR}'. Error: {e}")
# ==============================================================================
# --- FUNÇÃO HELPER 'create_transformer' (Essencial) ---
# ==============================================================================
def create_transformer(ckpt_path: str, precision: str) -> Transformer3DModel:
"""
Cria e carrega o modelo Transformer3D com a lógica de precisão correta,
incluindo suporte para a otimização float8_e4m3fn.
"""
if precision == "float8_e4m3fn":
try:
from q8_kernels.integration.patch_transformer import patch_diffusers_transformer as patch_transformer_for_q8_kernels
transformer = Transformer3DModel.from_pretrained(ckpt_path, dtype=torch.float8_e4m3fn)
patch_transformer_for_q8_kernels(transformer)
return transformer
except ImportError:
raise ValueError("Q8-Kernels not found. To use FP8 checkpoint, please install Q8 kernels from the project's wheels.")
elif precision == "bfloat16":
return Transformer3DModel.from_pretrained(ckpt_path).to(torch.bfloat16)
else:
return Transformer3DModel.from_pretrained(ckpt_path)
# ==============================================================================
# --- BUILDER DE BAIXO NÍVEL OFICIAL ---
# ==============================================================================
def build_complete_pipeline_on_cpu(checkpoint_path: str, config: Dict) -> LTXVideoPipeline:
"""
Constrói o pipeline LTX COMPLETO, incluindo o VAE, e o mantém na CPU.
Esta é a função de construção fundamental usada pelo LTXAducManager.
"""
logging.info(f"Building complete LTX pipeline from checkpoint: {Path(checkpoint_path).name}")
with safe_open(checkpoint_path, framework="pt") as f:
metadata = f.metadata() or {}
config_str = metadata.get("config", "{}")
allowed_inference_steps = json.loads(config_str).get("allowed_inference_steps")
precision = config.get("precision", "bfloat16")
# Usa a função helper correta para criar o transformer
transformer = create_transformer(checkpoint_path, precision).to("cpu")
scheduler = RectifiedFlowScheduler.from_pretrained(checkpoint_path)
text_encoder = T5EncoderModel.from_pretrained(config["text_encoder_model_name_or_path"], subfolder="text_encoder").to("cpu")
tokenizer = T5Tokenizer.from_pretrained(config["text_encoder_model_name_or_path"], subfolder="tokenizer")
patchifier = SymmetricPatchifier(patch_size=1)
vae = CausalVideoAutoencoder.from_pretrained(checkpoint_path).to("cpu")
if precision == "bfloat16":
text_encoder.to(torch.bfloat16)
vae.to(torch.bfloat16)
# O transformer já foi convertido para bfloat16 dentro de create_transformer, se aplicável
pipeline = LTXVideoPipeline(
transformer=transformer,
patchifier=patchifier,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
vae=vae, # VAE é incluído para que o pipeline possa ser auto-suficiente
allowed_inference_steps=allowed_inference_steps,
prompt_enhancer_image_caption_model=None,
prompt_enhancer_image_caption_processor=None,
prompt_enhancer_llm_model=None,
prompt_enhancer_llm_tokenizer=None,
)
return pipeline
# ==============================================================================
# --- FUNÇÕES AUXILIARES GENÉRICAS ---
# ==============================================================================
def seed_everything(seed: int):
"""
Define a semente para PyTorch, NumPy e Python para garantir reprodutibilidade.
"""
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = Fals
def load_image_to_tensor_with_resize_and_crop(
image_input: Union[str, Image.Image],
target_height: int,
target_width: int,
) -> torch.Tensor:
"""
Carrega, redimensiona, corta e processa uma imagem para um tensor de pixel 5D,
normalizado para [-1, 1], pronto para ser enviado ao VAE para encoding.
"""
if isinstance(image_input, str):
image = Image.open(image_input).convert("RGB")
elif isinstance(image_input, Image.Image):
image = image_input.convert("RGB")
else:
raise ValueError("image_input must be a file path or a PIL Image object")
input_width, input_height = image.size
aspect_ratio_target = target_width / target_height
aspect_ratio_frame = input_width / input_height
if aspect_ratio_frame > aspect_ratio_target:
new_width, new_height = int(input_height * aspect_ratio_target), input_height
x_start = (input_width - new_width) // 2
image = image.crop((x_start, 0, x_start + new_width, new_height))
else:
new_height = int(input_width / aspect_ratio_target)
y_start = (input_height - new_height) // 2
image = image.crop((0, y_start, input_width, y_start + new_height))
image = image.resize((target_width, target_height), Image.Resampling.LANCZOS)
frame_tensor = TVF.to_tensor(image)
# Esta parte depende de 'crf_compressor', então precisamos importá-lo aqui também
try:
from ltx_video.pipelines import crf_compressor
frame_tensor_hwc = frame_tensor.permute(1, 2, 0)
frame_tensor_hwc = crf_compressor.compress(frame_tensor_hwc)
frame_tensor = frame_tensor_hwc.permute(2, 0, 1)
except ImportError:
logging.warning("CRF Compressor not found. Skipping compression step.")
frame_tensor = (frame_tensor * 2.0) - 1.0
return frame_tensor.unsqueeze(0).unsqueeze(2)
def seed_everything(seed: int):
"""
Define a semente para PyTorch, NumPy e Python para garantir reprodutibilidade.
"""
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False