Test / api /ltx /vae_aduc_pipeline.py
eeuuia's picture
Update api/ltx/vae_aduc_pipeline.py
5ae8585 verified
raw
history blame
13.9 kB
# FILE: api/ltx/vae_aduc_pipeline.py
# DESCRIPTION: A dedicated, "hot" VAE service specialist.
# It holds the VAE model on a dedicated GPU and provides high-level services
# for encoding images/tensors into conditioning items and decoding latents back to pixels.
import os
import sys
import time
import copy
import threading
from pathlib import Path
from typing import List, Union, Tuple, Optional
from dataclasses import dataclass
import torch
import numpy as np
from PIL import Image
from einops import rearrange
import torch.nn.functional as F
from managers.gpu_manager import gpu_manager
from utils.debug_utils import log_function_io
from diffusers.utils.torch_utils import randn_tensor
import logging
import warnings
# --- Configuração de Logging e Warnings ---
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", message=".*")
try:
from huggingface_hub import logging as hf_logging
hf_logging.set_verbosity_error()
except ImportError:
pass
# ==============================================================================
# --- IMPORTAÇÕES E DEFINIÇÕES DE TIPO ---
# ==============================================================================
LTX_VIDEO_REPO_DIR = Path("/data/LTX-Video")
if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path:
sys.path.insert(0, str(LTX_VIDEO_REPO_DIR.resolve()))
from ltx_video.models.autoencoders.vae_encode import vae_encode, vae_decode, latent_to_pixel_coords
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXVideoPipeline
@dataclass
class LatentConditioningItem:
latent_tensor: torch.Tensor
media_frame_number: int
conditioning_strength: float
# ==============================================================================
# --- CLASSE PRINCIPAL DO SERVIÇO VAE ---
# ==============================================================================
class VaeAducPipeline:
_instance = None
_lock = threading.Lock()
def __new__(cls, *args, **kwargs):
with cls._lock:
if cls._instance is None:
cls._instance = super().__new__(cls)
cls._instance._initialized = False
return cls._instance
def __init__(self):
if hasattr(self, '_initialized') and self._initialized: return
with self._lock:
if hasattr(self, '_initialized') and self._initialized: return
logging.info("⚙️ Initializing VaeAducPipeline Singleton...")
t0 = time.time()
self.device = gpu_manager.get_ltx_vae_device()
try:
from api.ltx.ltx_aduc_manager import ltx_aduc_manager
main_pipeline = ltx_aduc_manager.get_pipeline()
if main_pipeline is None:
raise RuntimeError("LTXPoolManager must be initialized before VaeAducPipeline.")
self.vae: CausalVideoAutoencoder = main_pipeline.vae
self.patchifier = main_pipeline.patchifier
self.transformer = main_pipeline.transformer
self.vae_scale_factor = main_pipeline.vae_scale_factor
except Exception as e:
logging.critical(f"Failed to get components from LTXPoolManager. Error: {e}", exc_info=True)
raise
self.vae.to(self.device).eval()
self.dtype = self.vae.dtype
self._initialized = True
logging.info(f"✅ VaeAducPipeline ready. Components are 'hot' on {self.device}. Startup time: {time.time() - t0:.2f}s")
# --- MÉTODOS PÚBLICOS DE SERVIÇO ---
@log_function_io
def encode_video(self, video_tensor: torch.Tensor, vae_per_channel_normalize: bool = True) -> torch.Tensor:
logging.info(f"VaeAducPipeline: Encoding video with shape {video_tensor.shape}")
if not (video_tensor.ndim == 5):
raise ValueError(f"Input video tensor must be 5D (B, C, F, H, W), but got shape {video_tensor.shape}")
video_tensor_normalized = (video_tensor * 2.0) - 1.0
try:
video_gpu = video_tensor_normalized.to(self.device, dtype=self.dtype)
with torch.no_grad():
latents = vae_encode(video_gpu, self.vae, vae_per_channel_normalize=vae_per_channel_normalize)
logging.info(f"VaeAducPipeline: Successfully encoded video to latents of shape {latents.shape}")
return latents.cpu()
finally:
self._cleanup_gpu()
@log_function_io
def decode_and_resize_video(self, latent_tensor: torch.Tensor, target_height: int, target_width: int, decode_timestep: float = 0.05) -> torch.Tensor:
logging.info(f"VaeAducPipeline: Decoding latents {latent_tensor.shape} and resizing to {target_height}x{target_width}")
pixel_video = self.decode_to_pixels(latent_tensor, decode_timestep)
num_frames = pixel_video.shape[2]
current_height, current_width = pixel_video.shape[3:]
if current_height == target_height and current_width == target_width:
logging.info("VaeAducPipeline: Resizing skipped, already at target resolution.")
return pixel_video
videos_flat = rearrange(pixel_video, "b c f h w -> (b f) c h w")
videos_resized = F.interpolate(videos_flat, size=(target_height, target_width), mode="bilinear", align_corners=False)
final_video = rearrange(videos_resized, "(b f) c h w -> b c f h w", f=num_frames)
logging.info(f"VaeAducPipeline: Resized video to final shape {final_video.shape}")
return final_video
@log_function_io
def decode_to_pixels(self, latent_tensor: torch.Tensor, decode_timestep: float = 0.05) -> torch.Tensor:
t0 = time.time()
try:
latent_tensor_gpu = latent_tensor.to(self.device, dtype=self.dtype)
num_items = latent_tensor_gpu.shape[0]
timestep_tensor = torch.tensor([decode_timestep] * num_items, device=self.device, dtype=self.dtype)
with torch.no_grad():
pixels = vae_decode(latent_tensor_gpu, self.vae, is_video=True, timestep=timestep_tensor, vae_per_channel_normalize=True)
logging.info(f"VaeAducPipeline: Decoded latents {latent_tensor.shape} in {time.time() - t0:.2f}s.")
return pixels.cpu()
finally:
self._cleanup_gpu()
@log_function_io
def prepare_conditioning(
self,
conditioning_items: Optional[List[Union[ConditioningItem, LatentConditioningItem]]],
init_latents: torch.Tensor,
num_frames: int,
height: int,
width: int,
vae_per_channel_normalize: bool = True,
generator: Optional[torch.Generator] = None,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor], int]:
init_latents = init_latents.to(self.device, dtype=self.dtype)
if not conditioning_items:
latents_p, coords_l = self.patchifier.patchify(latents=init_latents)
coords_p = self._latent_to_pixel_coords(coords_l)
return latents_p.cpu(), coords_p.cpu(), None, 0
mask = torch.zeros(init_latents.shape[0], *init_latents.shape[2:], dtype=torch.float32, device=self.device)
extra_latents, extra_coords, extra_masks = [], [], []
num_extra_latents = 0
is_latent_mode = isinstance(conditioning_items[0], LatentConditioningItem)
with torch.no_grad():
if is_latent_mode:
for item in conditioning_items:
latents = item.latent_tensor.to(device=self.device, dtype=self.dtype)
if item.media_frame_number == 0:
f, h, w = latents.shape[-3:]
init_latents[..., :f, :h, :w] = torch.lerp(init_latents[..., :f, :h, :w], latents, item.conditioning_strength)
mask[..., :f, :h, :w] = item.conditioning_strength
else:
if latents.shape[2] > 1:
init_latents, mask, latents = self._handle_non_first_sequence(
init_latents, mask, latents, item.media_frame_number, item.conditioning_strength
)
if latents is not None:
latents_p, coords_p, new_mask, num_new = self._process_extra_item(latents, item, generator)
extra_latents.append(latents_p); extra_coords.append(coords_p); extra_masks.append(new_mask)
num_extra_latents += num_new
else:
for item in conditioning_items:
item_resized = self._resize_conditioning_item(item, height, width)
media_item = item_resized.media_item.to(self.device, dtype=self.dtype)
latents = vae_encode(media_item, self.vae, vae_per_channel_normalize=vae_per_channel_normalize)
if item.media_frame_number == 0:
latents_pos, lx, ly = self._get_latent_spatial_position(latents, item_resized, height, width)
f, h, w = latents_pos.shape[-3:]
init_latents[..., :f, ly:ly+h, lx:lx+w] = torch.lerp(init_latents[..., :f, ly:ly+h, lx:lx+w], latents_pos, item.conditioning_strength)
mask[..., :f, ly:ly+h, lx:lx+w] = item.conditioning_strength
else:
if media_item.shape[2] > 1:
init_latents, mask, latents = self._handle_non_first_sequence(
init_latents, mask, latents, item.media_frame_number, item.conditioning_strength
)
if latents is not None:
latents_p, coords_p, new_mask, num_new = self._process_extra_item(latents, item, generator)
extra_latents.append(latents_p); extra_coords.append(coords_p); extra_masks.append(new_mask)
num_extra_latents += num_new
# --- Consolidação final ---
latents_p, coords_l = self.patchifier.patchify(latents=init_latents)
coords_p = self._latent_to_pixel_coords(coords_l)
mask_p, _ = self.patchifier.patchify(latents=mask.unsqueeze(1))
mask_p = mask_p.squeeze(-1)
if extra_latents:
latents_p = torch.cat([*extra_latents, latents_p], dim=1)
coords_p = torch.cat([*extra_coords, coords_p], dim=2)
mask_p = torch.cat([*extra_masks, mask_p], dim=1)
use_flash = getattr(self.transformer.config, 'use_tpu_flash_attention', False)
if use_flash:
latents_p = latents_p[:, :-num_extra_latents]
coords_p = coords_p[:, :, :-num_extra_latents]
mask_p = mask_p[:, :-num_extra_latents]
return latents_p.cpu(), coords_p.cpu(), mask_p.cpu(), num_extra_latents
# --- MÉTODOS PRIVADOS AUXILIARES ---
def _cleanup_gpu(self):
if torch.cuda.is_available():
with torch.cuda.device(self.device): torch.cuda.empty_cache()
def _latent_to_pixel_coords(self, c): return latent_to_pixel_coords(c, self.vae, causal_fix=self.transformer.config.causal_temporal_positioning)
@staticmethod
def _resize_tensor(m, h, w):
if m.shape[-2:] != (h, w):
n = m.shape[2]
flat = rearrange(m, "b c n h w -> (b n) c h w")
resized = F.interpolate(flat, (h, w), mode="bilinear", align_corners=False)
return rearrange(resized, "(b n) c h w -> b c n h w", n=n)
return m
def _resize_conditioning_item(self, i, h, w):
n = copy.copy(i); n.media_item = self._resize_tensor(i.media_item, h, w); return n
def _get_latent_spatial_position(self, l, i, h, w, strip=True):
s, hi, wi = self.vae_scale_factor, i.media_item.shape[-2], i.media_item.shape[-1]
xs = (w - wi) // 2 if i.media_x is None else i.media_x
ys = (h - hi) // 2 if i.media_y is None else i.media_y
if strip:
if xs > 0: xs += s; l = l[..., :, 1:]
if ys > 0: ys += s; l = l[..., 1:, :]
if (xs + wi) < w: l = l[..., :, :-1]
if (ys + hi) < h: l = l[..., :-1, :]
return l, xs // s, ys // s
def _handle_non_first_sequence(
self,
init_latents: torch.Tensor,
mask: torch.Tensor,
latents: torch.Tensor,
media_frame_number: int,
conditioning_strength: float,
num_prefix=2,
mode="concat"
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
fl, flp = latents.shape[2], num_prefix
if fl > flp:
start = media_frame_number // 8 + flp
end = start + fl - flp
init_latents[..., start:end, :, :] = torch.lerp(init_latents[..., start:end, :, :], latents[..., flp:, :, :], conditioning_strength)
mask[..., start:end, :, :] = conditioning_strength
if mode == "concat":
latents = latents[..., :flp, :, :]
else:
latents = None
return init_latents, mask, latents
def _process_extra_item(self, l, i, g):
n = randn_tensor(l.shape, generator=g, device=self.device, dtype=self.dtype)
l = torch.lerp(n, l, i.conditioning_strength)
lp, cl = self.patchifier.patchify(l)
cp = self._latent_to_pixel_coords(cl); cp[:, 0] += i.media_frame_number
nl = lp.shape[1]
nm = torch.full(lp.shape[:2], i.conditioning_strength, dtype=torch.float32, device=self.device)
return lp, cp, nm, nl
# --- Instânciação do Singleton ---
vae_aduc_pipeline = VaeAducPipeline()