Spaces:
Paused
Paused
| # ltx_server_refactored.py — VideoService (Modular Version) | |
| # --- 0. WARNINGS E AMBIENTE --- | |
| import warnings | |
| warnings.filterwarnings("ignore", category=UserWarning) | |
| warnings.filterwarnings("ignore", category=FutureWarning) | |
| warnings.filterwarnings("ignore", message=".*") | |
| from huggingface_hub import logging | |
| logging.set_verbosity_error() | |
| logging.set_verbosity_warning() | |
| logging.set_verbosity_info() | |
| logging.set_verbosity_debug() | |
| LTXV_DEBUG=1 | |
| LTXV_FRAME_LOG_EVERY=8 | |
| import os, subprocess, shlex, tempfile | |
| import torch | |
| import json | |
| import numpy as np | |
| import random | |
| import os | |
| import shlex | |
| import yaml | |
| from typing import List, Dict | |
| from pathlib import Path | |
| import imageio | |
| from PIL import Image | |
| import tempfile | |
| from huggingface_hub import hf_hub_download | |
| import sys | |
| import subprocess | |
| import gc | |
| import shutil | |
| import contextlib | |
| import time | |
| import traceback | |
| from einops import rearrange | |
| import torch.nn.functional as F | |
| from managers.vae_manager import vae_manager_singleton | |
| from tools.video_encode_tool import video_encode_tool_singleton | |
| DEPS_DIR = Path("/data") | |
| LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video" | |
| def run_setup(): | |
| setup_script_path = "setup.py" | |
| if not os.path.exists(setup_script_path): | |
| print("[DEBUG] 'setup.py' não encontrado. Pulando clonagem de dependências.") | |
| return | |
| try: | |
| print("[DEBUG] Executando setup.py para dependências...") | |
| subprocess.run([sys.executable, setup_script_path], check=True) | |
| print("[DEBUG] Setup concluído com sucesso.") | |
| except subprocess.CalledProcessError as e: | |
| print(f"[DEBUG] ERRO no setup.py (code {e.returncode}). Abortando.") | |
| sys.exit(1) | |
| if not LTX_VIDEO_REPO_DIR.exists(): | |
| print(f"[DEBUG] Repositório não encontrado em {LTX_VIDEO_REPO_DIR}. Rodando setup...") | |
| run_setup() | |
| def add_deps_to_path(): | |
| repo_path = str(LTX_VIDEO_REPO_DIR.resolve()) | |
| if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path: | |
| sys.path.insert(0, repo_path) | |
| print(f"[DEBUG] Repo adicionado ao sys.path: {repo_path}") | |
| def _query_gpu_processes_via_nvml(device_index: int) -> List[Dict]: | |
| try: | |
| import psutil | |
| import pynvml as nvml | |
| nvml.nvmlInit() | |
| handle = nvml.nvmlDeviceGetHandleByIndex(device_index) | |
| try: | |
| procs = nvml.nvmlDeviceGetComputeRunningProcesses_v3(handle) | |
| except Exception: | |
| procs = nvml.nvmlDeviceGetComputeRunningProcesses(handle) | |
| results = [] | |
| for p in procs: | |
| pid = int(p.pid) | |
| used_mb = None | |
| try: | |
| if getattr(p, "usedGpuMemory", None) is not None and p.usedGpuMemory not in (0,): | |
| used_mb = max(0, int(p.usedGpuMemory) // (1024 * 1024)) | |
| except Exception: | |
| used_mb = None | |
| name = "unknown" | |
| user = "unknown" | |
| try: | |
| import psutil | |
| pr = psutil.Process(pid) | |
| name = pr.name() | |
| user = pr.username() | |
| except Exception: | |
| pass | |
| results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb}) | |
| nvml.nvmlShutdown() | |
| return results | |
| except Exception: | |
| return [] | |
| def _query_gpu_processes_via_nvidiasmi(device_index: int) -> List[Dict]: | |
| cmd = f"nvidia-smi -i {device_index} --query-compute-apps=pid,process_name,used_memory --format=csv,noheader,nounits" | |
| try: | |
| out = subprocess.check_output(shlex.split(cmd), stderr=subprocess.STDOUT, text=True, timeout=2.0) | |
| except Exception: | |
| return [] | |
| results = [] | |
| for line in out.strip().splitlines(): | |
| parts = [p.strip() for p in line.split(",")] | |
| if len(parts) >= 3: | |
| try: | |
| pid = int(parts[0]); name = parts[1]; used_mb = int(parts[2]) | |
| user = "unknown" | |
| try: | |
| import psutil | |
| pr = psutil.Process(pid) | |
| user = pr.username() | |
| except Exception: | |
| pass | |
| results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb}) | |
| except Exception: | |
| continue | |
| return results | |
| def calculate_padding(orig_h, orig_w, target_h, target_w): | |
| pad_h = target_h - orig_h | |
| pad_w = target_w - orig_w | |
| pad_top = pad_h // 2 | |
| pad_bottom = pad_h - pad_top | |
| pad_left = pad_w // 2 | |
| pad_right = pad_w - pad_left | |
| return (pad_left, pad_right, pad_top, pad_bottom) | |
| def calculate_new_dimensions(orig_w, orig_h, divisor=8): | |
| if orig_w == 0 or orig_h == 0: | |
| return 512, 512 | |
| if orig_w >= orig_h: | |
| aspect_ratio = orig_w / orig_h | |
| new_h = 512 | |
| new_w = new_h * aspect_ratio | |
| else: | |
| aspect_ratio = orig_h / orig_w | |
| new_w = 512 | |
| new_h = new_w * aspect_ratio | |
| final_w = int(round(new_w / divisor)) * divisor | |
| final_h = int(round(new_h / divisor)) * divisor | |
| final_w = max(divisor, final_w) | |
| final_h = max(divisor, final_h) | |
| print(f"[Dimension Calc] Original: {orig_w}x{orig_h} -> Calculado: {new_w:.0f}x{new_h:.0f} -> Final (divisível por {divisor}): {final_w}x{final_h}") | |
| return final_h, final_w | |
| def _gpu_process_table(processes: List[Dict], current_pid: int) -> str: | |
| if not processes: | |
| return " - Processos ativos: (nenhum)\n" | |
| processes = sorted(processes, key=lambda x: (x.get("used_mb") or 0), reverse=True) | |
| lines = [" - Processos ativos (PID | USER | NAME | VRAM MB):"] | |
| for p in processes: | |
| star = "*" if p["pid"] == current_pid else " " | |
| used_str = str(p["used_mb"]) if p.get("used_mb") is not None else "N/A" | |
| lines.append(f" {star} {p['pid']} | {p['user']} | {p['name']} | {used_str}") | |
| return "\n".join(lines) + "\n" | |
| def log_tensor_info(tensor, name="Tensor"): | |
| if not isinstance(tensor, torch.Tensor): | |
| print(f"\n[INFO] '{name}' não é tensor.") | |
| return | |
| print(f"\n--- Tensor: {name} ---") | |
| print(f" - Shape: {tuple(tensor.shape)}") | |
| print(f" - Dtype: {tensor.dtype}") | |
| print(f" - Device: {tensor.device}") | |
| if tensor.numel() > 0: | |
| try: | |
| print(f" - Min: {tensor.min().item():.4f} Max: {tensor.max().item():.4f} Mean: {tensor.mean().item():.4f}") | |
| except Exception: | |
| pass | |
| print("------------------------------------------\n") | |
| add_deps_to_path() | |
| from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline | |
| from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy | |
| from ltx_video.models.autoencoders.vae_encode import un_normalize_latents, normalize_latents | |
| from ltx_video.pipelines.pipeline_ltx_video import adain_filter_latent | |
| from api.ltx.inference import ( | |
| create_ltx_video_pipeline, | |
| create_latent_upsampler, | |
| load_image_to_tensor_with_resize_and_crop, | |
| seed_everething, | |
| ) | |
| class VideoService: | |
| def __init__(self): | |
| t0 = time.perf_counter() | |
| print("[DEBUG] Inicializando VideoService...") | |
| self.debug = os.getenv("LTXV_DEBUG", "1") == "1" | |
| self.frame_log_every = int(os.getenv("LTXV_FRAME_LOG_EVERY", "8")) | |
| self.config = self._load_config() | |
| print(f"[DEBUG] Config carregada (precision={self.config.get('precision')}, sampler={self.config.get('sampler')})") | |
| self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
| print(f"[DEBUG] Device selecionado: {self.device}") | |
| self.last_memory_reserved_mb = 0.0 | |
| self._tmp_dirs = set(); self._tmp_files = set(); self._last_outputs = [] | |
| self.pipeline, self.latent_upsampler = self._load_models() | |
| print(f"[DEBUG] Pipeline e Upsampler carregados. Upsampler ativo? {bool(self.latent_upsampler)}") | |
| print(f"[DEBUG] Movendo modelos para {self.device}...") | |
| self.pipeline.to(self.device) | |
| if self.latent_upsampler: | |
| self.latent_upsampler.to(self.device) | |
| self._apply_precision_policy() | |
| print(f"[DEBUG] runtime_autocast_dtype = {getattr(self, 'runtime_autocast_dtype', None)}") | |
| vae_manager_singleton.attach_pipeline( | |
| self.pipeline, | |
| device=self.device, | |
| autocast_dtype=self.runtime_autocast_dtype | |
| ) | |
| print(f"[DEBUG] VAE manager conectado: has_vae={hasattr(self.pipeline, 'vae')} device={self.device}") | |
| if self.device == "cuda": | |
| torch.cuda.empty_cache() | |
| self._log_gpu_memory("Após carregar modelos") | |
| print(f"[DEBUG] VideoService pronto. boot_time={time.perf_counter()-t0:.3f}s") | |
| def _log_gpu_memory(self, stage_name: str): | |
| if self.device != "cuda": | |
| return | |
| device_index = torch.cuda.current_device() if torch.cuda.is_available() else 0 | |
| current_reserved_b = torch.cuda.memory_reserved(device_index) | |
| current_reserved_mb = current_reserved_b / (1024 ** 2) | |
| total_memory_b = torch.cuda.get_device_properties(device_index).total_memory | |
| total_memory_mb = total_memory_b / (1024 ** 2) | |
| peak_reserved_mb = torch.cuda.max_memory_reserved(device_index) / (1024 ** 2) | |
| delta_mb = current_reserved_mb - getattr(self, "last_memory_reserved_mb", 0.0) | |
| processes = _query_gpu_processes_via_nvml(device_index) or _query_gpu_processes_via_nvidiasmi(device_index) | |
| print(f"\n--- [LOG GPU] {stage_name} (cuda:{device_index}) ---") | |
| print(f" - Reservado: {current_reserved_mb:.2f} MB / {total_memory_mb:.2f} MB (Δ={delta_mb:+.2f} MB)") | |
| if peak_reserved_mb > getattr(self, "last_memory_reserved_mb", 0.0): | |
| print(f" - Pico reservado (nesta fase): {peak_reserved_mb:.2f} MB") | |
| print(_gpu_process_table(processes, os.getpid()), end="") | |
| print("--------------------------------------------------\n") | |
| self.last_memory_reserved_mb = current_reserved_mb | |
| def _register_tmp_dir(self, d: str): | |
| if d and os.path.isdir(d): | |
| self._tmp_dirs.add(d); print(f"[DEBUG] Registrado tmp dir: {d}") | |
| def _register_tmp_file(self, f: str): | |
| if f and os.path.exists(f): | |
| self._tmp_files.add(f); print(f"[DEBUG] Registrado tmp file: {f}") | |
| def finalize(self, keep_paths=None, extra_paths=None, clear_gpu=True): | |
| print("[DEBUG] Finalize: iniciando limpeza...") | |
| keep = set(keep_paths or []); extras = set(extra_paths or []) | |
| removed_files = 0 | |
| for f in list(self._tmp_files | extras): | |
| try: | |
| if f not in keep and os.path.isfile(f): | |
| os.remove(f); removed_files += 1; print(f"[DEBUG] Removido arquivo tmp: {f}") | |
| except Exception as e: | |
| print(f"[DEBUG] Falha removendo arquivo {f}: {e}") | |
| finally: | |
| self._tmp_files.discard(f) | |
| removed_dirs = 0 | |
| for d in list(self._tmp_dirs): | |
| try: | |
| if d not in keep and os.path.isdir(d): | |
| shutil.rmtree(d, ignore_errors=True); removed_dirs += 1; print(f"[DEBUG] Removido diretório tmp: {d}") | |
| except Exception as e: | |
| print(f"[DEBUG] Falha removendo diretório {d}: {e}") | |
| finally: | |
| self._tmp_dirs.discard(d) | |
| print(f"[DEBUG] Finalize: arquivos removidos={removed_files}, dirs removidos={removed_dirs}") | |
| gc.collect() | |
| try: | |
| if clear_gpu and torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| try: | |
| torch.cuda.ipc_collect() | |
| except Exception: | |
| pass | |
| except Exception as e: | |
| print(f"[DEBUG] Finalize: limpeza GPU falhou: {e}") | |
| try: | |
| self._log_gpu_memory("Após finalize") | |
| except Exception as e: | |
| print(f"[DEBUG] Log GPU pós-finalize falhou: {e}") | |
| def _load_config(self): | |
| base = LTX_VIDEO_REPO_DIR / "configs" | |
| config_path = base / "ltxv-13b-0.9.8-distilled-fp8.yaml" | |
| print(f"[DEBUG] Carregando config: {config_path}") | |
| with open(config_path, "r") as file: | |
| return yaml.safe_load(file) | |
| def _load_models(self): | |
| t0 = time.perf_counter() | |
| LTX_REPO = "Lightricks/LTX-Video" | |
| print("[DEBUG] Baixando checkpoint principal...") | |
| distilled_model_path = hf_hub_download(repo_id=LTX_REPO, filename=self.config["checkpoint_path"]) | |
| self.config["checkpoint_path"] = distilled_model_path | |
| print(f"[DEBUG] Checkpoint em: {distilled_model_path}") | |
| print("[DEBUG] Baixando upscaler espacial...") | |
| spatial_upscaler_path = hf_hub_download(repo_id=LTX_REPO, filename=self.config["spatial_upscaler_model_path"]) | |
| self.config["spatial_upscaler_model_path"] = spatial_upscaler_path | |
| print(f"[DEBUG] Upscaler em: {spatial_upscaler_path}") | |
| print("[DEBUG] Construindo pipeline...") | |
| pipeline = create_ltx_video_pipeline( | |
| ckpt_path=self.config["checkpoint_path"], | |
| precision=self.config["precision"], | |
| text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"], | |
| sampler=self.config["sampler"], device="cpu", enhance_prompt=False, | |
| prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"], | |
| prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"], | |
| ) | |
| print("[DEBUG] Pipeline pronto.") | |
| latent_upsampler = None | |
| if self.config.get("spatial_upscaler_model_path"): | |
| print("[DEBUG] Construindo latent_upsampler...") | |
| latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu") | |
| print("[DEBUG] Upsampler pronto.") | |
| print(f"[DEBUG] _load_models() tempo total={time.perf_counter()-t0:.3f}s") | |
| return pipeline, latent_upsampler | |
| def _upsample_latents_internal(self, latents: torch.Tensor) -> torch.Tensor: | |
| if not self.latent_upsampler: | |
| raise ValueError("Latent Upsampler não está carregado.") | |
| self.latent_upsampler.to(self.device) | |
| self.pipeline.vae.to(self.device) | |
| print(f"[DEBUG-UPSAMPLE] Shape de entrada: {tuple(latents.shape)}") | |
| latents_unnormalized = un_normalize_latents(latents, self.pipeline.vae, vae_per_channel_normalize=True) | |
| upsampled_latents = self.latent_upsampler(latents_unnormalized) | |
| upsampled_latents_normalized = normalize_latents(upsampled_latents, self.pipeline.vae, vae_per_channel_normalize=True) | |
| print(f"[DEBUG-UPSAMPLE] Shape de saída: {tuple(upsampled_latents_normalized.shape)}") | |
| return upsampled_latents_normalized | |
| def _apply_precision_policy(self): | |
| prec = str(self.config.get("precision", "")).lower() | |
| self.runtime_autocast_dtype = torch.float32 | |
| print(f"[DEBUG] Aplicando política de precisão: {prec}") | |
| if prec in ["float8_e4m3fn", "bfloat16"]: | |
| self.runtime_autocast_dtype = torch.bfloat16 | |
| elif prec == "mixed_precision": | |
| self.runtime_autocast_dtype = torch.float16 | |
| def _prepare_conditioning_tensor(self, filepath, height, width, padding_values): | |
| print(f"[DEBUG] Carregando condicionamento: {filepath}") | |
| tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width) | |
| tensor = torch.nn.functional.pad(tensor, padding_values) | |
| out = tensor.to(self.device, dtype=self.runtime_autocast_dtype) | |
| print(f"[DEBUG] Cond shape={tuple(out.shape)} dtype={out.dtype} device={out.device}") | |
| return out | |
| def _concat_mp4s_no_reencode(self, mp4_list: List[str], out_path: str): | |
| if not mp4_list: | |
| raise ValueError("A lista de MP4s para concatenar está vazia.") | |
| if len(mp4_list) == 1: | |
| shutil.move(mp4_list[0], out_path) | |
| print(f"[DEBUG] Apenas um vídeo, movido para: {out_path}") | |
| return | |
| with tempfile.NamedTemporaryFile("w", delete=False, suffix=".txt") as f: | |
| for mp4 in mp4_list: | |
| f.write(f"file '{os.path.abspath(mp4)}'\n") | |
| list_path = f.name | |
| cmd = f"ffmpeg -y -f concat -safe 0 -i {list_path} -c copy {out_path}" | |
| print(f"[DEBUG] Concat: {cmd}") | |
| try: | |
| subprocess.check_call(shlex.split(cmd)) | |
| finally: | |
| os.remove(list_path) | |
| def _save_and_log_video(self, pixel_tensor, base_filename, fps, temp_dir, results_dir, used_seed, progress_callback=None): | |
| """Função auxiliar para salvar um tensor de pixels em um arquivo MP4.""" | |
| output_path = os.path.join(temp_dir, f"{base_filename}_{used_seed}.mp4") | |
| video_encode_tool_singleton.save_video_from_tensor( | |
| pixel_tensor, output_path, fps=fps, progress_callback=progress_callback | |
| ) | |
| final_path = os.path.join(results_dir, f"{base_filename}_{used_seed}.mp4") | |
| shutil.move(output_path, final_path) | |
| print(f"[DEBUG] Vídeo salvo em: {final_path}") | |
| return final_path | |
| # ============================================================================== | |
| # --- NOVAS FUNÇÕES MODULARES --- | |
| # ============================================================================== | |
| def prepare_condition_items(self, items_list: List, height: int, width: int, num_frames: int): | |
| """ | |
| Prepara a lista de tensores de condicionamento a partir de uma lista de imagens ou tensores. | |
| Formato da lista de entrada: [[media_path_ou_tensor, frame_alvo, peso], ...] | |
| """ | |
| if not items_list: | |
| return [] | |
| height_padded = ((height - 1) // 8 + 1) * 8 | |
| width_padded = ((width - 1) // 8 + 1) * 8 | |
| padding_values = calculate_padding(height, width, height_padded, width_padded) | |
| conditioning_items = [] | |
| print("\n--- Preparando Itens de Condicionamento ---") | |
| for item in items_list: | |
| media, frame, weight = item | |
| if isinstance(media, str): | |
| print(f" - Carregando imagem: {media} para o frame {frame}") | |
| tensor = self._prepare_conditioning_tensor(media, height, width, padding_values) | |
| elif isinstance(media, torch.Tensor): | |
| print(f" - Usando tensor fornecido para o frame {frame}") | |
| tensor = media.to(self.device, dtype=self.runtime_autocast_dtype) | |
| else: | |
| warnings.warn(f"Tipo de item desconhecido: {type(media)}. Ignorando.") | |
| continue | |
| safe_frame = max(0, min(int(frame), num_frames - 1)) | |
| conditioning_items.append(ConditioningItem(tensor, safe_frame, float(weight))) | |
| print(f"Total de itens de condicionamento preparados: {len(conditioning_items)}") | |
| return conditioning_items | |
| def generate_low(self, prompt, negative_prompt, height, width, duration, guidance_scale, seed, conditioning_items=None): | |
| """ | |
| Gera um vídeo em baixa resolução (primeiro passe). | |
| Retorna: (caminho_do_video_mp4, caminho_do_tensor_cpu, seed_usado) | |
| """ | |
| print("\n--- INICIANDO ETAPA 1: GERAÇÃO EM BAIXA RESOLUÇÃO ---") | |
| self._log_gpu_memory("Início da Geração Low-Res") | |
| used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed) | |
| seed_everething(used_seed) | |
| FPS = 24.0 | |
| target_frames = round(duration * FPS) | |
| actual_num_frames = max(9, int(round((target_frames - 1) / 8.0) * 8 + 1)) | |
| height_padded = ((height - 1) // 8 + 1) * 8 | |
| width_padded = ((width - 1) // 8 + 1) * 8 | |
| generator = torch.Generator(device=self.device).manual_seed(used_seed) | |
| temp_dir = tempfile.mkdtemp(prefix="ltxv_low_"); self._register_tmp_dir(temp_dir) | |
| results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True) | |
| downscale_factor = self |