Spaces:
Paused
Paused
| # FILE: app.py | |
| # DESCRIPTION: Final Gradio web interface for the ADUC-SDR Video Suite. | |
| # This version definitively removes the guidance settings from the UI for a streamlined experience. | |
| import gradio as gr | |
| import traceback | |
| import sys | |
| import os | |
| import logging | |
| # ============================================================================== | |
| # --- IMPORTAÇÃO DOS SERVIÇOS DE BACKEND E UTILS --- | |
| # ============================================================================== | |
| try: | |
| from api.ltx_server_refactored_complete import video_generation_service | |
| from api.utils.debug_utils import log_function_io | |
| from api.seedvr_server import seedvr_server_singleton as seedvr_inference_server | |
| logging.info("All backend services (LTX, SeedVR) and debug utils imported successfully.") | |
| except ImportError as e: | |
| def log_function_io(func): return func | |
| logging.warning(f"Could not import a module. Some services or debug logs may be unavailable. Details: {e}") | |
| if 'video_generation_service' not in locals(): | |
| logging.critical(f"FATAL: Main LTX service failed to import.", exc_info=True) | |
| sys.exit(1) | |
| if 'seedvr_inference_server' not in locals(): | |
| seedvr_inference_server = None | |
| logging.warning("SeedVR server could not be initialized. Upscaling tab will be disabled.") | |
| except Exception as e: | |
| logging.critical(f"FATAL ERROR during backend initialization. Details: {e}", exc_info=True) | |
| sys.exit(1) | |
| # ============================================================================== | |
| # --- FUNÇÕES WRAPPER (PONTE ENTRE UI E BACKEND) --- | |
| # ============================================================================== | |
| def run_generate_base_video( | |
| generation_mode: str, prompt: str, neg_prompt: str, start_img: str, | |
| height: int, width: int, duration: float, | |
| fp_num_inference_steps: int, fp_skip_initial_steps: int, fp_skip_final_steps: int, | |
| progress=gr.Progress(track_tqdm=True) | |
| ) -> tuple: | |
| """Wrapper that collects UI data and calls the backend (without guidance parameters).""" | |
| try: | |
| logging.info(f"[UI] Request received. Selected mode: {generation_mode}") | |
| initial_conditions = [] | |
| if start_img: | |
| num_frames_estimate = int(duration * 24) | |
| items_list = [[start_img, 0, 1.0]] | |
| initial_conditions = video_generation_service.prepare_condition_items( | |
| items_list, height, width, num_frames_estimate | |
| ) | |
| ltx_configs = { | |
| "num_inference_steps": fp_num_inference_steps, | |
| "skip_initial_inference_steps": fp_skip_initial_steps, | |
| "skip_final_inference_steps": fp_skip_final_steps, | |
| } | |
| video_path, tensor_path, final_seed = video_generation_service.generate_low_resolution( | |
| prompt=prompt, negative_prompt=neg_prompt, | |
| height=height, width=width, duration=duration, | |
| initial_conditions=initial_conditions, ltx_configs_override=ltx_configs | |
| ) | |
| if not video_path: raise RuntimeError("Backend failed to return a valid video path.") | |
| new_state = {"low_res_video": video_path, "low_res_latents": tensor_path, "used_seed": final_seed} | |
| logging.info(f"[UI] Base video generation successful. Seed used: {final_seed}, Path: {video_path}") | |
| return video_path, new_state, gr.update(visible=True) | |
| except Exception as e: | |
| error_message = f"❌ An error occurred during base generation:\n{e}" | |
| logging.error(f"{error_message}\nDetails: {traceback.format_exc()}", exc_info=True) | |
| raise gr.Error(error_message) | |
| def run_ltx_refinement(state: dict, prompt: str, neg_prompt: str, progress=gr.Progress(track_tqdm=True)) -> tuple: | |
| """Wrapper for the LTX texture refinement function.""" | |
| if not state or not state.get("low_res_latents"): | |
| raise gr.Error("Error: Please generate a base video in Step 1 before refining.") | |
| try: | |
| logging.info(f"[UI] Requesting LTX refinement for latents: {state.get('low_res_latents')}") | |
| video_path, tensor_path = video_generation_service.generate_upscale_denoise( | |
| latents_path=state["low_res_latents"], | |
| prompt=prompt, negative_prompt=neg_prompt, | |
| seed=state["used_seed"] | |
| ) | |
| state["refined_video_ltx"] = video_path | |
| state["refined_latents_ltx"] = tensor_path | |
| logging.info(f"[UI] LTX refinement successful. Path: {video_path}") | |
| return video_path, state | |
| except Exception as e: | |
| error_message = f"❌ An error occurred during LTX Refinement:\n{e}" | |
| logging.error(f"{error_message}\nDetails: {traceback.format_exc()}", exc_info=True) | |
| raise gr.Error(error_message) | |
| def run_seedvr_upscaling(state: dict, seed: int, resolution: int, batch_size: int, fps: int, progress=gr.Progress(track_tqdm=True)) -> tuple: | |
| """Wrapper for the SeedVR resolution upscaling service.""" | |
| if not state or not state.get("low_res_video"): | |
| raise gr.Error("Error: Please generate a base video in Step 1 before upscaling.") | |
| if not seedvr_inference_server: | |
| raise gr.Error("Error: The SeedVR upscaling server is not available.") | |
| try: | |
| logging.info(f"[UI] Requesting SeedVR upscaling for video: {state.get('low_res_video')}") | |
| def progress_wrapper(p, desc=""): progress(p, desc=desc) | |
| output_filepath = seedvr_inference_server.run_inference( | |
| file_path=state["low_res_video"], seed=int(seed), resolution=int(resolution), | |
| batch_size=int(batch_size), fps=float(fps), progress=progress_wrapper | |
| ) | |
| status_message = f"✅ Upscaling complete!\nSaved to: {output_filepath}" | |
| logging.info(f"[UI] SeedVR upscaling successful. Path: {output_filepath}") | |
| return gr.update(value=output_filepath), gr.update(value=status_message) | |
| except Exception as e: | |
| error_message = f"❌ An error occurred during SeedVR Upscaling:\n{e}" | |
| logging.error(f"{error_message}\nDetails: {traceback.format_exc()}", exc_info=True) | |
| return None, gr.update(value=error_message) | |
| # ============================================================================== | |
| # --- CONSTRUÇÃO DA INTERFACE GRADIO --- | |
| # ============================================================================== | |
| def build_ui(): | |
| """Builds the entire Gradio application UI.""" | |
| with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo")) as demo: | |
| app_state = gr.State(value={"low_res_video": None, "low_res_latents": None, "used_seed": None}) | |
| ui_components = {} | |
| gr.Markdown("# ADUC-SDR Video Suite - LTX & SeedVR Workflow", elem_id="main-title") | |
| with gr.Row(): | |
| with gr.Column(scale=1): _build_generation_controls(ui_components) | |
| with gr.Column(scale=1): | |
| gr.Markdown("### Etapa 1: Vídeo Base Gerado") | |
| ui_components['low_res_video_output'] = gr.Video(label="O resultado aparecerá aqui", interactive=False) | |
| ui_components['used_seed_display'] = gr.Textbox(label="Seed Utilizada", interactive=False) | |
| _build_postprod_controls(ui_components) | |
| _register_event_handlers(app_state, ui_components) | |
| return demo | |
| def _build_generation_controls(ui: dict): | |
| """Builds the UI components for Step 1, with the guidance section removed.""" | |
| gr.Markdown("### Configurações de Geração") | |
| ui['generation_mode'] = gr.Radio(label="Modo de Geração", choices=["Simples (Prompt Único)", "Narrativa (Múltiplos Prompts)"], value="Narrativa (Múltiplos Prompts)") | |
| ui['prompt'] = gr.Textbox(label="Prompt(s)", value="Um leão majestoso caminha pela savana\nEle sobe em uma grande pedra e olha o horizonte", lines=4) | |
| ui['neg_prompt'] = gr.Textbox(label="Negative Prompt", value="blurry, low quality, bad anatomy, deformed", lines=2) | |
| ui['start_image'] = gr.Image(label="Imagem de Início (Opcional)", type="filepath", sources=["upload"]) | |
| with gr.Accordion("Parâmetros Principais", open=True): | |
| ui['duration'] = gr.Slider(label="Duração Total (s)", value=4, step=1, minimum=1, maximum=30) | |
| with gr.Row(): | |
| ui['height'] = gr.Slider(label="Height", value=432, step=8, minimum=256, maximum=1024) | |
| ui['width'] = gr.Slider(label="Width", value=768, step=8, minimum=256, maximum=1024) | |
| with gr.Accordion("Opções Avançadas LTX", open=False): | |
| gr.Markdown("#### Configurações de Passos de Inferência (First Pass)") | |
| gr.Markdown("*Deixe o valor padrão (ex: 20) ou 0 para usar a configuração do `config.yaml`.*") | |
| ui['fp_num_inference_steps'] = gr.Slider(label="Número de Passos", minimum=0, maximum=100, step=1, value=20, info="Padrão LTX: 20.") | |
| ui['fp_skip_initial_steps'] = gr.Slider(label="Pular Passos Iniciais", minimum=0, maximum=100, step=1, value=0) | |
| ui['fp_skip_final_steps'] = gr.Slider(label="Pular Passos Finais", minimum=0, maximum=100, step=1, value=0) | |
| ui['generate_low_btn'] = gr.Button("1. Gerar Vídeo Base", variant="primary") | |
| def _build_postprod_controls(ui: dict): | |
| """Builds the UI components for Step 2: Post-Production.""" | |
| with gr.Group(visible=False) as ui['post_prod_group']: | |
| gr.Markdown("--- \n## Etapa 2: Pós-Produção") | |
| with gr.Tabs(): | |
| with gr.TabItem("🚀 Upscaler de Textura (LTX)"): | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| gr.Markdown("Usa o prompt e a semente originais para refinar o vídeo, adicionando detalhes e texturas de alta qualidade.") | |
| ui['ltx_refine_btn'] = gr.Button("2. Aplicar Refinamento LTX", variant="primary") | |
| with gr.Column(scale=1): | |
| ui['ltx_refined_video_output'] = gr.Video(label="Vídeo com Textura Refinada", interactive=False) | |
| with gr.TabItem("✨ Upscaler de Resolução (SeedVR)"): | |
| is_seedvr_available = seedvr_inference_server is not None | |
| if not is_seedvr_available: | |
| gr.Markdown("🔴 **AVISO: O serviço SeedVR não está disponível.**") | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| ui['seedvr_seed'] = gr.Slider(minimum=0, maximum=999999, value=42, step=1, label="Seed") | |
| ui['seedvr_resolution'] = gr.Slider(minimum=720, maximum=2160, value=1080, step=8, label="Resolução Vertical Alvo") | |
| ui['seedvr_batch_size'] = gr.Slider(minimum=1, maximum=16, value=4, step=1, label="Batch Size por GPU") | |
| ui['seedvr_fps'] = gr.Number(label="FPS de Saída (0 = original)", value=0) | |
| ui['run_seedvr_btn'] = gr.Button("2. Iniciar Upscaling SeedVR", variant="primary", interactive=is_seedvr_available) | |
| with gr.Column(scale=1): | |
| ui['seedvr_video_output'] = gr.Video(label="Vídeo com Upscale SeedVR", interactive=False) | |
| ui['seedvr_status_box'] = gr.Textbox(label="Status do SeedVR", value="Aguardando...", lines=3, interactive=False) | |
| def _register_event_handlers(app_state: gr.State, ui: dict): | |
| """Registers all Gradio event handlers.""" | |
| def update_seed_display(state): | |
| return state.get("used_seed", "N/A") | |
| gen_inputs = [ | |
| ui['generation_mode'], ui['prompt'], ui['neg_prompt'], ui['start_image'], | |
| ui['height'], ui['width'], ui['duration'], | |
| ui['fp_num_inference_steps'], ui['fp_skip_initial_steps'], ui['fp_skip_final_steps'], | |
| ] | |
| gen_outputs = [ui['low_res_video_output'], app_state, ui['post_prod_group']] | |
| (ui['generate_low_btn'].click(fn=run_generate_base_video, inputs=gen_inputs, outputs=gen_outputs) | |
| .then(fn=update_seed_display, inputs=[app_state], outputs=[ui['used_seed_display']])) | |
| refine_inputs = [app_state, ui['prompt'], ui['neg_prompt']] | |
| refine_outputs = [ui['ltx_refined_video_output'], app_state] | |
| ui['ltx_refine_btn'].click(fn=run_ltx_refinement, inputs=refine_inputs, outputs=refine_outputs) | |
| if 'run_seedvr_btn' in ui and ui['run_seedvr_btn'].interactive: | |
| seedvr_inputs = [app_state, ui['seedvr_seed'], ui['seedvr_resolution'], ui['seedvr_batch_size'], ui['seedvr_fps']] | |
| seedvr_outputs = [ui['seedvr_video_output'], ui['seedvr_status_box']] | |
| ui['run_seedvr_btn'].click(fn=run_seedvr_upscaling, inputs=seedvr_inputs, outputs=seedvr_outputs) | |
| # ============================================================================== | |
| # --- PONTO DE ENTRADA DA APLICAÇÃO --- | |
| # ============================================================================== | |
| if __name__ == "__main__": | |
| log_level = os.environ.get("ADUC_LOG_LEVEL", "INFO").upper() | |
| logging.basicConfig(level=log_level, format='[%(levelname)s] [%(name)s] %(message)s') | |
| print("Building Gradio UI...") | |
| gradio_app = build_ui() | |
| print("Launching Gradio app...") | |
| gradio_app.queue().launch( | |
| server_name=os.getenv("GRADIO_SERVER_NAME", "0.0.0.0"), | |
| server_port=int(os.getenv("GRADIO_SERVER_PORT", "7860")), | |
| show_error=True | |
| ) |