Test / app.py
eeuuia's picture
Upload 9 files
8569f9a verified
raw
history blame
12.1 kB
# FILE: app.py
# DESCRIPTION: Final Gradio web interface for the ADUC-SDR Video Suite.
# This version is refactored to use the central LtxAducOrchestrator, simplifying the UI logic
# and making it a pure client of the backend services.
import gradio as gr
import traceback
import sys
import os
import logging
from PIL import Image
# ==============================================================================
# --- IMPORTAÇÃO DOS SERVIÇOS DE BACKEND E UTILS ---
# ==============================================================================
try:
# --- MUDANÇA PRINCIPAL: Importamos apenas o ORQUESTRADOR ---
# O orquestrador é agora nosso único ponto de entrada para a geração de vídeo.
from api.ltx_aduc_orchestrator import ltx_aduc_orchestrator
# O SeedVR (upscaler de resolução) ainda é um serviço separado que pode ser chamado após a geração.
from api.seedvr.seed_aduc_pipeline import seed_aduc_pipeline
# Nosso decorador de logging para depuração
from utils.debug_utils import log_function_io
logging.info("All backend services (Orchestrator, SeedVR) and debug utils imported successfully.")
except ImportError as e:
# Lógica de falha para o decorador de log
def log_function_io(func): return func
logging.warning(f"Could not import a module. Debug logger might be disabled. Details: {e}")
# Verifica se o orquestrador, que é CRÍTICO, falhou ao importar.
if 'ltx_aduc_orchestrator' not in locals() or ltx_aduc_orchestrator is None:
logging.critical(f"FATAL: Main Orchestrator service failed to import or initialize.", exc_info=True)
sys.exit(1)
# SeedVR é opcional, então apenas avisamos se ele falhar.
if 'seed_aduc_pipeline' not in locals():
seed_aduc_pipeline = None
logging.warning("SeedVR server could not be initialized. The SeedVR upscaling tab will be disabled.")
except Exception as e:
logging.critical(f"FATAL ERROR: An unexpected error occurred during backend initialization. Details: {e}", exc_info=True)
sys.exit(1)
# ==============================================================================
# --- FUNÇÕES WRAPPER (PONTE ENTRE UI E BACKEND) ---
# ==============================================================================
@log_function_io
def run_orchestrated_generation(
prompt: str, start_img_path: str,
height: int, width: int, duration: float,
fp_guidance_preset: str, fp_guidance_scale_list: str, fp_stg_scale_list: str,
fp_num_inference_steps: int,
progress=gr.Progress(track_tqdm=True)
) -> tuple:
"""
Função wrapper simplificada que coleta dados da UI e chama o orquestrador principal.
"""
try:
logging.info("[UI] Request received. Submitting job to the main orchestrator...")
# Monta o dicionário de configurações avançadas LTX a partir da UI
ltx_configs = {
"guidance_preset": fp_guidance_preset,
"guidance_scale_list": fp_guidance_scale_list,
"stg_scale_list": fp_stg_scale_list,
"num_inference_steps": fp_num_inference_steps
}
# Carrega a imagem inicial para um objeto PIL, que é o que o orquestrador espera.
initial_image_pil = Image.open(start_img_path).convert("RGB") if start_img_path else None
# --- CHAMADA ÚNICA E LIMPA PARA O ORQUESTRADOR ---
video_path = ltx_aduc_orchestrator(
prompt=prompt,
initial_image=initial_image_pil,
height=height,
width=width,
duration_in_seconds=duration,
ltx_configs=ltx_configs
)
if not video_path:
raise RuntimeError("Orchestrator failed to return a valid video path. Check backend logs for details.")
logging.info(f"[UI] Orchestrator job successful. Video path: {video_path}")
# O estado agora pode ser mais simples, apenas guardando o caminho do vídeo gerado para o próximo passo (SeedVR).
new_state = {"low_res_video": video_path}
return video_path, new_state, gr.update(visible=True)
except Exception as e:
error_message = f"❌ An error occurred during the orchestrated generation:\n{e}"
logging.error(f"{error_message}\nDetails: {traceback.format_exc()}", exc_info=True)
raise gr.Error(error_message)
@log_function_io
def run_seedvr_upscaling(state: dict, seed: int, resolution: int, batch_size: int, fps: int, progress=gr.Progress(track_tqdm=True)) -> tuple:
"""Wrapper para o upscale de resolução SeedVR. Esta função permanece a mesma."""
if not state or not state.get("low_res_video"):
raise gr.Error("Error: Please generate a base video in Step 1 before upscaling.")
if not seed_aduc_pipeline:
raise gr.Error("Error: The SeedVR upscaling server is not available.")
try:
logging.info(f"[UI] Requesting SeedVR upscaling for video: {state.get('low_res_video')}")
def progress_wrapper(p, desc=""): progress(p, desc=desc)
output_filepath = seed_aduc_pipeline.run_inference(
file_path=state["low_res_video"], seed=int(seed), resolution=int(resolution),
batch_size=int(batch_size), fps=float(fps), progress=progress_wrapper
)
status_message = f"✅ Upscaling complete!\nSaved to: {output_filepath}"
logging.info(f"[UI] SeedVR upscaling successful. Path: {output_filepath}")
return gr.update(value=output_filepath), gr.update(value=status_message)
except Exception as e:
error_message = f"❌ An error occurred during SeedVR Upscaling:\n{e}"
logging.error(f"{error_message}\nDetails: {traceback.format_exc()}", exc_info=True)
return None, gr.update(value=error_message)
# ==============================================================================
# --- CONSTRUÇÃO DA INTERFACE GRADIO ---
# ==============================================================================
def build_ui():
"""Constrói a interface completa do Gradio."""
with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo")) as demo:
app_state = gr.State(value={"low_res_video": None})
ui_components = {}
gr.Markdown("# ADUC-SDR Video Suite - Orchestrated Workflow", elem_id="main-title")
with gr.Row():
with gr.Column(scale=1): _build_generation_controls(ui_components)
with gr.Column(scale=1):
gr.Markdown("### Etapa 1: Vídeo Base Gerado pelo Orquestrador")
ui_components['low_res_video_output'] = gr.Video(label="O resultado aparecerá aqui", interactive=False)
_build_postprod_controls(ui_components)
_register_event_handlers(app_state, ui_components)
return demo
def _build_generation_controls(ui: dict):
"""Constrói os componentes da UI para a Etapa 1: Geração."""
gr.Markdown("### Configurações de Geração")
ui['prompt'] = gr.Textbox(label="Prompt(s) de Geração",
info="Escreva sua história. Cada nova linha será tratada como uma nova cena.",
value="Um leão majestoso caminha pela savana\nEle sobe em uma grande pedra e olha o horizonte",
lines=4)
ui['start_image'] = gr.Image(label="Imagem de Início (Opcional)", type="filepath", sources=["upload"])
with gr.Accordion("Parâmetros Principais", open=True):
ui['duration'] = gr.Slider(label="Duração Total (s)", value=4, step=1, minimum=1, maximum=30)
with gr.Row():
ui['height'] = gr.Slider(label="Altura", value=432, step=8, minimum=256, maximum=1024)
ui['width'] = gr.Slider(label="Largura", value=768, step=8, minimum=256, maximum=1024)
with gr.Accordion("Opções Avançadas LTX", open=False):
ui['fp_num_inference_steps'] = gr.Slider(label="Número de Passos", minimum=1, maximum=100, step=1, value=20)
ui['fp_guidance_preset'] = gr.Dropdown(label="Preset de Guiagem", choices=["Padrão (Recomendado)", "Customizado"], value="Padrão (Recomendado)")
with gr.Group(visible=False) as ui['custom_guidance_group']:
gr.Markdown("⚠️ Edite as listas em formato JSON. Ex: `[1.0, 2.5, 3.0]`")
ui['fp_guidance_scale_list'] = gr.Textbox(label="Lista de Guidance Scale", value="[1, 1, 6, 8, 6, 1, 1]")
ui['fp_stg_scale_list'] = gr.Textbox(label="Lista de STG Scale (Movimento)", value="[0, 0, 4, 4, 4, 2, 1]")
ui['generate_low_btn'] = gr.Button("1. Gerar Vídeo via Orquestrador", variant="primary")
def _build_postprod_controls(ui: dict):
"""Constrói os componentes da UI para a Etapa 2: Pós-Produção (Upscaling)."""
with gr.Group(visible=False) as ui['post_prod_group']:
gr.Markdown("--- \n## Etapa 2: Pós-Produção")
with gr.Tabs():
with gr.TabItem("✨ Upscaler de Resolução (SeedVR)"):
is_seedvr_available = seed_aduc_pipeline is not None
if not is_seedvr_available:
gr.Markdown("🔴 **AVISO: O serviço SeedVR não está disponível.**")
with gr.Row():
with gr.Column(scale=1):
ui['seedvr_seed'] = gr.Slider(minimum=0, maximum=999999, value=42, step=1, label="Seed")
ui['seedvr_resolution'] = gr.Slider(minimum=720, maximum=2160, value=1080, step=8, label="Resolução Vertical Alvo")
ui['seedvr_batch_size'] = gr.Slider(minimum=1, maximum=16, value=4, step=1, label="Batch Size por GPU")
ui['seedvr_fps'] = gr.Number(label="FPS de Saída (0 = original)", value=0)
ui['run_seedvr_btn'] = gr.Button("2. Iniciar Upscaling SeedVR", variant="primary", interactive=is_seedvr_available)
with gr.Column(scale=1):
ui['seedvr_video_output'] = gr.Video(label="Vídeo com Upscale SeedVR", interactive=False)
ui['seedvr_status_box'] = gr.Textbox(label="Status do SeedVR", value="Aguardando...", lines=3, interactive=False)
def _register_event_handlers(app_state: gr.State, ui: dict):
"""Registra todos os manipuladores de eventos do Gradio."""
def toggle_custom_guidance(preset_choice: str) -> gr.update:
return gr.update(visible=(preset_choice == "Customizado"))
ui['fp_guidance_preset'].change(fn=toggle_custom_guidance, inputs=ui['fp_guidance_preset'], outputs=ui['custom_guidance_group'])
gen_inputs = [
ui['prompt'], ui['start_image'],
ui['height'], ui['width'], ui['duration'],
ui['fp_guidance_preset'], ui['fp_guidance_scale_list'], ui['fp_stg_scale_list'],
ui['fp_num_inference_steps'],
]
gen_outputs = [ui['low_res_video_output'], app_state, ui['post_prod_group']]
ui['generate_low_btn'].click(fn=run_orchestrated_generation, inputs=gen_inputs, outputs=gen_outputs)
if 'run_seedvr_btn' in ui and ui['run_seedvr_btn'].interactive:
seedvr_inputs = [app_state, ui['seedvr_seed'], ui['seedvr_resolution'], ui['seedvr_batch_size'], ui['seedvr_fps']]
seedvr_outputs = [ui['seedvr_video_output'], ui['seedvr_status_box']]
ui['run_seedvr_btn'].click(fn=run_seedvr_upscaling, inputs=seedvr_inputs, outputs=seedvr_outputs)
# ==============================================================================
# --- PONTO DE ENTRADA DA APLICAÇÃO ---
# ==============================================================================
if __name__ == "__main__":
log_level = os.environ.get("ADUC_LOG_LEVEL", "INFO").upper()
logging.basicConfig(level=log_level, format='[%(levelname)s] [%(name)s] %(message)s')
print("Building Gradio UI...")
gradio_app = build_ui()
print("Launching Gradio app...")
gradio_app.queue().launch(
server_name=os.getenv("GRADIO_SERVER_NAME", "0.0.0.0"),
server_port=int(os.getenv("GRADIO_SERVER_PORT", "7860")),
show_error=True
)