Spaces:
Paused
Paused
Update api/ltx/ltx_aduc_pipeline.py
Browse files
api/ltx/ltx_aduc_pipeline.py
CHANGED
|
@@ -232,8 +232,12 @@ class LtxAducPipeline:
|
|
| 232 |
if kwargs.get("ltx_configs_override"):
|
| 233 |
self._apply_ui_overrides(first_pass_config, kwargs.get("ltx_configs_override"))
|
| 234 |
|
|
|
|
| 235 |
# 3. Monta o dicionário de argumentos SEM conditioning_items primeiro
|
| 236 |
pipeline_kwargs = {
|
|
|
|
|
|
|
|
|
|
| 237 |
"prompt": kwargs['prompt'],
|
| 238 |
"negative_prompt": kwargs['negative_prompt'],
|
| 239 |
"height": downscaled_height,
|
|
@@ -242,25 +246,18 @@ class LtxAducPipeline:
|
|
| 242 |
"frame_rate": int(DEFAULT_FPS),
|
| 243 |
"generator": torch.Generator(device=self.main_device).manual_seed(kwargs['seed']),
|
| 244 |
"output_type": "latent",
|
| 245 |
-
#"conditioning_items": conditioning_items if conditioning_items else None,
|
| 246 |
"media_items": None,
|
| 247 |
"decode_timestep": self.config["decode_timestep"],
|
| 248 |
"decode_noise_scale": self.config["decode_noise_scale"],
|
| 249 |
"stochastic_sampling": self.config["stochastic_sampling"],
|
| 250 |
-
"image_cond_noise_scale": 0.
|
| 251 |
"is_video": True,
|
| 252 |
"vae_per_channel_normalize": True,
|
| 253 |
"mixed_precision": (self.config["precision"] == "mixed_precision"),
|
| 254 |
"offload_to_cpu": False,
|
| 255 |
"enhance_prompt": False,
|
| 256 |
-
#"skip_layer_strategy": SkipLayerStrategy.AttentionValues,
|
| 257 |
-
**first_pass_config
|
| 258 |
}
|
| 259 |
-
|
| 260 |
-
# --- Bloco de Logging para Depuração ---
|
| 261 |
-
# 4. Loga os argumentos do pipeline (sem os tensores de condição)
|
| 262 |
-
logging.info(f"\n[Info] Pipeline Arguments (BASE):\n {json.dumps(pipeline_kwargs, indent=2, default=str)}\n")
|
| 263 |
-
|
| 264 |
# Loga os conditioning_items separadamente com a nossa função helper
|
| 265 |
conditioning_items_list = kwargs.get('conditioning_items')
|
| 266 |
self._log_conditioning_items(conditioning_items_list)
|
|
|
|
| 232 |
if kwargs.get("ltx_configs_override"):
|
| 233 |
self._apply_ui_overrides(first_pass_config, kwargs.get("ltx_configs_override"))
|
| 234 |
|
| 235 |
+
|
| 236 |
# 3. Monta o dicionário de argumentos SEM conditioning_items primeiro
|
| 237 |
pipeline_kwargs = {
|
| 238 |
+
"num_inference_steps": first_pass_config.get("num_inference_steps"),
|
| 239 |
+
"skip_final_inference_steps": first_pass_config.get("skip_final_inference_steps")
|
| 240 |
+
'cfg_star_rescale": "true",
|
| 241 |
"prompt": kwargs['prompt'],
|
| 242 |
"negative_prompt": kwargs['negative_prompt'],
|
| 243 |
"height": downscaled_height,
|
|
|
|
| 246 |
"frame_rate": int(DEFAULT_FPS),
|
| 247 |
"generator": torch.Generator(device=self.main_device).manual_seed(kwargs['seed']),
|
| 248 |
"output_type": "latent",
|
|
|
|
| 249 |
"media_items": None,
|
| 250 |
"decode_timestep": self.config["decode_timestep"],
|
| 251 |
"decode_noise_scale": self.config["decode_noise_scale"],
|
| 252 |
"stochastic_sampling": self.config["stochastic_sampling"],
|
| 253 |
+
"image_cond_noise_scale": 0.05,
|
| 254 |
"is_video": True,
|
| 255 |
"vae_per_channel_normalize": True,
|
| 256 |
"mixed_precision": (self.config["precision"] == "mixed_precision"),
|
| 257 |
"offload_to_cpu": False,
|
| 258 |
"enhance_prompt": False,
|
|
|
|
|
|
|
| 259 |
}
|
| 260 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
# Loga os conditioning_items separadamente com a nossa função helper
|
| 262 |
conditioning_items_list = kwargs.get('conditioning_items')
|
| 263 |
self._log_conditioning_items(conditioning_items_list)
|