Spaces:
Paused
Paused
Update api/ltx/ltx_aduc_manager.py
Browse files- api/ltx/ltx_aduc_manager.py +49 -65
api/ltx/ltx_aduc_manager.py
CHANGED
|
@@ -5,7 +5,6 @@
|
|
| 5 |
import logging
|
| 6 |
import torch
|
| 7 |
import sys
|
| 8 |
-
import os
|
| 9 |
from pathlib import Path
|
| 10 |
import threading
|
| 11 |
import queue
|
|
@@ -14,10 +13,9 @@ import yaml
|
|
| 14 |
from huggingface_hub import hf_hub_download
|
| 15 |
from typing import List, Optional, Callable, Any, Tuple, Dict
|
| 16 |
|
| 17 |
-
# --- Importa o gerenciador de GPUs e
|
| 18 |
from managers.gpu_manager import gpu_manager
|
| 19 |
-
|
| 20 |
-
from api.ltx.ltx_utils import _build_ltx_transformer_pipeline, _build_vae, _build_latent_upscaler
|
| 21 |
|
| 22 |
# --- Adiciona o path do LTX-Video para importação de tipos ---
|
| 23 |
LTX_VIDEO_REPO_DIR = Path("/data/LTX-Video")
|
|
@@ -29,76 +27,56 @@ add_deps_to_path()
|
|
| 29 |
|
| 30 |
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline
|
| 31 |
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
|
| 32 |
-
from ltx_video.models.autoencoders.latent_upsampler import LatentUpsampler
|
| 33 |
-
|
| 34 |
-
# ==============================================================================
|
| 35 |
-
# --- FUNÇÕES DE ORQUESTRAÇÃO DA CONSTRUÇÃO (Internas ao Manager) ---
|
| 36 |
-
# ==============================================================================
|
| 37 |
-
|
| 38 |
-
def _load_config() -> Dict:
|
| 39 |
-
"""Helper centralizado para carregar o arquivo de configuração YAML."""
|
| 40 |
-
config_path = LTX_VIDEO_REPO_DIR / "configs" / "ltxv-13b-0.9.8-distilled-fp8.yaml"
|
| 41 |
-
with open(config_path, "r") as file:
|
| 42 |
-
return yaml.safe_load(file)
|
| 43 |
-
|
| 44 |
-
def get_main_ltx_pipeline() -> LTXVideoPipeline:
|
| 45 |
-
"""Orquestra a construção do Pipeline Transformer principal (sem o VAE)."""
|
| 46 |
-
config = _load_config()
|
| 47 |
-
precision = config.get("precision", "bfloat16")
|
| 48 |
-
ckpt_path_str = hf_hub_download(repo_id="Lightricks/LTX-Video", filename=config["checkpoint_path"], cache_dir=os.environ.get("HF_HOME"))
|
| 49 |
-
return _build_ltx_transformer_pipeline(ckpt_path_str, config, precision)
|
| 50 |
-
|
| 51 |
-
def get_main_vae() -> CausalVideoAutoencoder:
|
| 52 |
-
"""Orquestra a construção do VAE principal."""
|
| 53 |
-
config = _load_config()
|
| 54 |
-
precision = config.get("precision", "bfloat16")
|
| 55 |
-
ckpt_path_str = hf_hub_download(repo_id="Lightricks/LTX-Video", filename=config["checkpoint_path"], cache_dir=os.environ.get("HF_HOME"))
|
| 56 |
-
return _build_vae(ckpt_path_str, precision)
|
| 57 |
|
| 58 |
# ==============================================================================
|
| 59 |
# --- CLASSES DE WORKER (Especialistas em Tarefas) ---
|
| 60 |
# ==============================================================================
|
| 61 |
|
| 62 |
class BaseWorker(threading.Thread):
|
| 63 |
-
|
|
|
|
| 64 |
super().__init__()
|
| 65 |
self.worker_id = worker_id
|
| 66 |
self.device = device
|
|
|
|
| 67 |
self.is_healthy = False
|
| 68 |
self.is_busy = False
|
| 69 |
self.daemon = True
|
| 70 |
|
| 71 |
def run(self):
|
|
|
|
| 72 |
try:
|
| 73 |
-
self.
|
|
|
|
|
|
|
| 74 |
self.is_healthy = True
|
| 75 |
logging.info(f"✅ Worker {self.worker_id} ({self.__class__.__name__}) on {self.device} is healthy and ready.")
|
| 76 |
except Exception:
|
| 77 |
self.is_healthy = False
|
| 78 |
logging.error(f"❌ Worker {self.worker_id} on {self.device} FAILED to initialize!", exc_info=True)
|
| 79 |
|
| 80 |
-
def
|
| 81 |
-
|
|
|
|
| 82 |
|
| 83 |
def get_status(self) -> Tuple[bool, bool]:
|
| 84 |
return self.is_healthy, self.is_busy
|
| 85 |
|
| 86 |
class LTXMainWorker(BaseWorker):
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
|
|
|
| 90 |
self.autocast_dtype: torch.dtype = torch.float32
|
| 91 |
|
| 92 |
-
def
|
| 93 |
-
logging.info(f"[LTXWorker-{self.worker_id}] Loading models to CPU...")
|
| 94 |
-
self.pipeline = get_main_ltx_pipeline()
|
| 95 |
self._set_precision_policy()
|
| 96 |
-
logging.info(f"[LTXWorker-{self.worker_id}] Moving pipeline to {self.device}...")
|
| 97 |
-
self.pipeline.to(self.device)
|
| 98 |
|
| 99 |
def _set_precision_policy(self):
|
| 100 |
try:
|
| 101 |
-
|
|
|
|
|
|
|
| 102 |
precision = str(config.get("precision", "bfloat16")).lower()
|
| 103 |
if precision in ["float8_e4m3fn", "bfloat16"]: self.autocast_dtype = torch.bfloat16
|
| 104 |
elif precision == "mixed_precision": self.autocast_dtype = torch.float16
|
|
@@ -118,15 +96,12 @@ class LTXMainWorker(BaseWorker):
|
|
| 118 |
self.is_busy = False
|
| 119 |
|
| 120 |
class VAEWorker(BaseWorker):
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
self.vae = get_main_vae()
|
| 128 |
-
logging.info(f"[VAEWorker-{self.worker_id}] Moving VAE to {self.device}...")
|
| 129 |
-
self.vae.to(self.device)
|
| 130 |
self.vae.eval()
|
| 131 |
|
| 132 |
def execute(self, job_func: Callable, args: tuple, kwargs: dict) -> Any:
|
|
@@ -163,8 +138,12 @@ class LTXAducManager:
|
|
| 163 |
self.vae_job_queue = queue.Queue()
|
| 164 |
self.pool_lock = threading.Lock()
|
| 165 |
|
|
|
|
|
|
|
|
|
|
| 166 |
self._initialize_workers()
|
| 167 |
|
|
|
|
| 168 |
self.ltx_dispatcher = threading.Thread(target=self._dispatch_jobs, args=(self.ltx_job_queue, self.ltx_workers), daemon=True)
|
| 169 |
self.vae_dispatcher = threading.Thread(target=self._dispatch_jobs, args=(self.vae_job_queue, self.vae_workers), daemon=True)
|
| 170 |
self.health_monitor = threading.Thread(target=self._health_check_loop, daemon=True)
|
|
@@ -176,18 +155,29 @@ class LTXAducManager:
|
|
| 176 |
self._initialized = True
|
| 177 |
logging.info("✅ Advanced Pool Manager is running with all threads started.")
|
| 178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
def _initialize_workers(self):
|
|
|
|
| 180 |
ltx_device = gpu_manager.get_ltx_device()
|
| 181 |
vae_device = gpu_manager.get_ltx_vae_device()
|
| 182 |
|
| 183 |
with self.pool_lock:
|
| 184 |
-
|
| 185 |
-
# No futuro, pode-se iterar sobre listas de GPUs de gpu_manager.
|
| 186 |
-
ltx_worker = LTXMainWorker(worker_id=0, device=ltx_device)
|
| 187 |
self.ltx_workers.append(ltx_worker)
|
| 188 |
ltx_worker.start()
|
| 189 |
|
| 190 |
-
vae_worker = VAEWorker(worker_id=0, device=vae_device)
|
| 191 |
self.vae_workers.append(vae_worker)
|
| 192 |
vae_worker.start()
|
| 193 |
|
|
@@ -195,8 +185,7 @@ class LTXAducManager:
|
|
| 195 |
with self.pool_lock:
|
| 196 |
for worker in worker_pool:
|
| 197 |
healthy, busy = worker.get_status()
|
| 198 |
-
if healthy and not busy:
|
| 199 |
-
return worker
|
| 200 |
return None
|
| 201 |
|
| 202 |
def _dispatch_jobs(self, job_queue: queue.Queue, worker_pool: List[BaseWorker]):
|
|
@@ -206,7 +195,6 @@ class LTXAducManager:
|
|
| 206 |
while worker is None:
|
| 207 |
worker = self._get_available_worker(worker_pool)
|
| 208 |
if worker is None: time.sleep(0.1)
|
| 209 |
-
|
| 210 |
try:
|
| 211 |
result = worker.execute(job_func, args, kwargs)
|
| 212 |
future.put(result)
|
|
@@ -220,14 +208,14 @@ class LTXAducManager:
|
|
| 220 |
for i, worker in enumerate(self.ltx_workers):
|
| 221 |
if not worker.is_alive() or not worker.is_healthy:
|
| 222 |
logging.warning(f"LTX Worker {worker.worker_id} on {worker.device} is UNHEALTHY. Restarting...")
|
| 223 |
-
new_worker = LTXMainWorker(worker.worker_id, worker.device)
|
| 224 |
self.ltx_workers[i] = new_worker
|
| 225 |
new_worker.start()
|
| 226 |
|
| 227 |
for i, worker in enumerate(self.vae_workers):
|
| 228 |
if not worker.is_alive() or not worker.is_healthy:
|
| 229 |
logging.warning(f"VAE Worker {worker.worker_id} on {worker.device} is UNHEALTHY. Restarting...")
|
| 230 |
-
new_worker = VAEWorker(worker.worker_id, worker.device)
|
| 231 |
self.vae_workers[i] = new_worker
|
| 232 |
new_worker.start()
|
| 233 |
|
|
@@ -237,9 +225,7 @@ class LTXAducManager:
|
|
| 237 |
|
| 238 |
job_queue = self.ltx_job_queue if job_type == 'ltx' else self.vae_job_queue
|
| 239 |
future = queue.Queue(1)
|
| 240 |
-
|
| 241 |
job_queue.put((job_func, args, kwargs, future))
|
| 242 |
-
|
| 243 |
result = future.get()
|
| 244 |
|
| 245 |
if isinstance(result, Exception):
|
|
@@ -247,11 +233,9 @@ class LTXAducManager:
|
|
| 247 |
|
| 248 |
return result
|
| 249 |
|
| 250 |
-
# ==============================================================================
|
| 251 |
# --- INSTANCIAÇÃO GLOBAL ---
|
| 252 |
-
# ==============================================================================
|
| 253 |
try:
|
| 254 |
ltx_aduc_manager = LTXAducManager()
|
| 255 |
-
except Exception
|
| 256 |
logging.critical("CRITICAL ERROR: Failed to initialize the LTXAducManager pool.", exc_info=True)
|
| 257 |
ltx_aduc_manager = None
|
|
|
|
| 5 |
import logging
|
| 6 |
import torch
|
| 7 |
import sys
|
|
|
|
| 8 |
from pathlib import Path
|
| 9 |
import threading
|
| 10 |
import queue
|
|
|
|
| 13 |
from huggingface_hub import hf_hub_download
|
| 14 |
from typing import List, Optional, Callable, Any, Tuple, Dict
|
| 15 |
|
| 16 |
+
# --- Importa o gerenciador de GPUs e o builder de baixo nível ---
|
| 17 |
from managers.gpu_manager import gpu_manager
|
| 18 |
+
from api.ltx.ltx_utils import build_components_on_cpu
|
|
|
|
| 19 |
|
| 20 |
# --- Adiciona o path do LTX-Video para importação de tipos ---
|
| 21 |
LTX_VIDEO_REPO_DIR = Path("/data/LTX-Video")
|
|
|
|
| 27 |
|
| 28 |
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline
|
| 29 |
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
# ==============================================================================
|
| 32 |
# --- CLASSES DE WORKER (Especialistas em Tarefas) ---
|
| 33 |
# ==============================================================================
|
| 34 |
|
| 35 |
class BaseWorker(threading.Thread):
|
| 36 |
+
"""Classe base para nossos workers com gerenciamento de estado e saúde."""
|
| 37 |
+
def __init__(self, worker_id: int, device: torch.device, model: torch.nn.Module):
|
| 38 |
super().__init__()
|
| 39 |
self.worker_id = worker_id
|
| 40 |
self.device = device
|
| 41 |
+
self.model = model
|
| 42 |
self.is_healthy = False
|
| 43 |
self.is_busy = False
|
| 44 |
self.daemon = True
|
| 45 |
|
| 46 |
def run(self):
|
| 47 |
+
"""O loop de vida do worker, responsável por mover o modelo para a GPU."""
|
| 48 |
try:
|
| 49 |
+
logging.info(f"Worker {self.worker_id} ({self.__class__.__name__}) moving model to {self.device}...")
|
| 50 |
+
self.model.to(self.device)
|
| 51 |
+
self._post_load_hook()
|
| 52 |
self.is_healthy = True
|
| 53 |
logging.info(f"✅ Worker {self.worker_id} ({self.__class__.__name__}) on {self.device} is healthy and ready.")
|
| 54 |
except Exception:
|
| 55 |
self.is_healthy = False
|
| 56 |
logging.error(f"❌ Worker {self.worker_id} on {self.device} FAILED to initialize!", exc_info=True)
|
| 57 |
|
| 58 |
+
def _post_load_hook(self):
|
| 59 |
+
"""Gancho para ações pós-carregamento, como chamar .eval()."""
|
| 60 |
+
pass
|
| 61 |
|
| 62 |
def get_status(self) -> Tuple[bool, bool]:
|
| 63 |
return self.is_healthy, self.is_busy
|
| 64 |
|
| 65 |
class LTXMainWorker(BaseWorker):
|
| 66 |
+
"""Worker especialista para o pipeline principal do LTX."""
|
| 67 |
+
def __init__(self, worker_id: int, device: torch.device, pipeline: LTXVideoPipeline):
|
| 68 |
+
super().__init__(worker_id, device, pipeline)
|
| 69 |
+
self.pipeline = self.model # Alias para clareza
|
| 70 |
self.autocast_dtype: torch.dtype = torch.float32
|
| 71 |
|
| 72 |
+
def _post_load_hook(self):
|
|
|
|
|
|
|
| 73 |
self._set_precision_policy()
|
|
|
|
|
|
|
| 74 |
|
| 75 |
def _set_precision_policy(self):
|
| 76 |
try:
|
| 77 |
+
config_path = LTX_VIDEO_REPO_DIR / "configs" / "ltxv-13b-0.9.8-distilled-fp8.yaml"
|
| 78 |
+
with open(config_path, "r") as file:
|
| 79 |
+
config = yaml.safe_load(file)
|
| 80 |
precision = str(config.get("precision", "bfloat16")).lower()
|
| 81 |
if precision in ["float8_e4m3fn", "bfloat16"]: self.autocast_dtype = torch.bfloat16
|
| 82 |
elif precision == "mixed_precision": self.autocast_dtype = torch.float16
|
|
|
|
| 96 |
self.is_busy = False
|
| 97 |
|
| 98 |
class VAEWorker(BaseWorker):
|
| 99 |
+
"""Worker especialista para o modelo VAE."""
|
| 100 |
+
def __init__(self, worker_id: int, device: torch.device, vae: CausalVideoAutoencoder):
|
| 101 |
+
super().__init__(worker_id, device, vae)
|
| 102 |
+
self.vae = self.model # Alias
|
| 103 |
+
|
| 104 |
+
def _post_load_hook(self):
|
|
|
|
|
|
|
|
|
|
| 105 |
self.vae.eval()
|
| 106 |
|
| 107 |
def execute(self, job_func: Callable, args: tuple, kwargs: dict) -> Any:
|
|
|
|
| 138 |
self.vae_job_queue = queue.Queue()
|
| 139 |
self.pool_lock = threading.Lock()
|
| 140 |
|
| 141 |
+
# Carrega os modelos na CPU antes de criar os workers
|
| 142 |
+
self.main_pipeline, self.main_vae = self._load_components_once()
|
| 143 |
+
|
| 144 |
self._initialize_workers()
|
| 145 |
|
| 146 |
+
# Inicia threads consumidores para processar as filas
|
| 147 |
self.ltx_dispatcher = threading.Thread(target=self._dispatch_jobs, args=(self.ltx_job_queue, self.ltx_workers), daemon=True)
|
| 148 |
self.vae_dispatcher = threading.Thread(target=self._dispatch_jobs, args=(self.vae_job_queue, self.vae_workers), daemon=True)
|
| 149 |
self.health_monitor = threading.Thread(target=self._health_check_loop, daemon=True)
|
|
|
|
| 155 |
self._initialized = True
|
| 156 |
logging.info("✅ Advanced Pool Manager is running with all threads started.")
|
| 157 |
|
| 158 |
+
def _load_components_once(self) -> Tuple[LTXVideoPipeline, CausalVideoAutoencoder]:
|
| 159 |
+
"""Orquestra a construção de TODOS os componentes na CPU uma única vez."""
|
| 160 |
+
logging.info("Manager loading all components onto CPU...")
|
| 161 |
+
config_path = LTX_VIDEO_REPO_DIR / "configs" / "ltxv-13b-0.9.8-distilled-fp8.yaml"
|
| 162 |
+
with open(config_path, "r") as file:
|
| 163 |
+
config = yaml.safe_load(file)
|
| 164 |
+
|
| 165 |
+
ckpt_path = hf_hub_download(repo_id="Lightricks/LTX-Video", filename=config["checkpoint_path"], cache_dir=os.environ.get("HF_HOME"))
|
| 166 |
+
pipeline, vae = build_components_on_cpu(ckpt_path, config)
|
| 167 |
+
logging.info("✅ All components loaded to CPU successfully.")
|
| 168 |
+
return pipeline, vae
|
| 169 |
+
|
| 170 |
def _initialize_workers(self):
|
| 171 |
+
"""Cria e inicia os workers, injetando os modelos já carregados."""
|
| 172 |
ltx_device = gpu_manager.get_ltx_device()
|
| 173 |
vae_device = gpu_manager.get_ltx_vae_device()
|
| 174 |
|
| 175 |
with self.pool_lock:
|
| 176 |
+
ltx_worker = LTXMainWorker(worker_id=0, device=ltx_device, pipeline=self.main_pipeline)
|
|
|
|
|
|
|
| 177 |
self.ltx_workers.append(ltx_worker)
|
| 178 |
ltx_worker.start()
|
| 179 |
|
| 180 |
+
vae_worker = VAEWorker(worker_id=0, device=vae_device, vae=self.main_vae)
|
| 181 |
self.vae_workers.append(vae_worker)
|
| 182 |
vae_worker.start()
|
| 183 |
|
|
|
|
| 185 |
with self.pool_lock:
|
| 186 |
for worker in worker_pool:
|
| 187 |
healthy, busy = worker.get_status()
|
| 188 |
+
if healthy and not busy: return worker
|
|
|
|
| 189 |
return None
|
| 190 |
|
| 191 |
def _dispatch_jobs(self, job_queue: queue.Queue, worker_pool: List[BaseWorker]):
|
|
|
|
| 195 |
while worker is None:
|
| 196 |
worker = self._get_available_worker(worker_pool)
|
| 197 |
if worker is None: time.sleep(0.1)
|
|
|
|
| 198 |
try:
|
| 199 |
result = worker.execute(job_func, args, kwargs)
|
| 200 |
future.put(result)
|
|
|
|
| 208 |
for i, worker in enumerate(self.ltx_workers):
|
| 209 |
if not worker.is_alive() or not worker.is_healthy:
|
| 210 |
logging.warning(f"LTX Worker {worker.worker_id} on {worker.device} is UNHEALTHY. Restarting...")
|
| 211 |
+
new_worker = LTXMainWorker(worker.worker_id, worker.device, self.main_pipeline)
|
| 212 |
self.ltx_workers[i] = new_worker
|
| 213 |
new_worker.start()
|
| 214 |
|
| 215 |
for i, worker in enumerate(self.vae_workers):
|
| 216 |
if not worker.is_alive() or not worker.is_healthy:
|
| 217 |
logging.warning(f"VAE Worker {worker.worker_id} on {worker.device} is UNHEALTHY. Restarting...")
|
| 218 |
+
new_worker = VAEWorker(worker.worker_id, worker.device, self.main_vae)
|
| 219 |
self.vae_workers[i] = new_worker
|
| 220 |
new_worker.start()
|
| 221 |
|
|
|
|
| 225 |
|
| 226 |
job_queue = self.ltx_job_queue if job_type == 'ltx' else self.vae_job_queue
|
| 227 |
future = queue.Queue(1)
|
|
|
|
| 228 |
job_queue.put((job_func, args, kwargs, future))
|
|
|
|
| 229 |
result = future.get()
|
| 230 |
|
| 231 |
if isinstance(result, Exception):
|
|
|
|
| 233 |
|
| 234 |
return result
|
| 235 |
|
|
|
|
| 236 |
# --- INSTANCIAÇÃO GLOBAL ---
|
|
|
|
| 237 |
try:
|
| 238 |
ltx_aduc_manager = LTXAducManager()
|
| 239 |
+
except Exception:
|
| 240 |
logging.critical("CRITICAL ERROR: Failed to initialize the LTXAducManager pool.", exc_info=True)
|
| 241 |
ltx_aduc_manager = None
|