Spaces:
Paused
Paused
Update api/ltx_server_refactored_complete.py
Browse files- api/ltx_server_refactored_complete.py +189 -577
api/ltx_server_refactored_complete.py
CHANGED
|
@@ -1,602 +1,214 @@
|
|
| 1 |
-
# FILE:
|
| 2 |
-
# DESCRIPTION:
|
| 3 |
-
# Features modular generation, narrative chunking, and resource management.
|
| 4 |
|
| 5 |
-
import warnings
|
| 6 |
-
import os, subprocess, shlex, tempfile
|
| 7 |
-
import torch
|
| 8 |
-
import json
|
| 9 |
-
import numpy as np
|
| 10 |
-
import random
|
| 11 |
import os
|
| 12 |
-
import io
|
| 13 |
-
import shlex
|
| 14 |
-
import yaml
|
| 15 |
-
from typing import Dict, List, Optional, Tuple
|
| 16 |
-
from pathlib import Path
|
| 17 |
-
import imageio
|
| 18 |
-
from PIL import Image
|
| 19 |
-
import tempfile
|
| 20 |
-
from huggingface_hub import hf_hub_download
|
| 21 |
import sys
|
| 22 |
-
import subprocess
|
| 23 |
import gc
|
| 24 |
-
import
|
| 25 |
-
import
|
| 26 |
-
import
|
| 27 |
-
import
|
| 28 |
-
from api.gpu_manager import gpu_manager
|
| 29 |
-
from einops import rearrange
|
| 30 |
-
import torch.nn.functional as F
|
| 31 |
-
from managers.vae_manager import vae_manager_singleton
|
| 32 |
-
from tools.video_encode_tool import video_encode_tool_singleton
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
from huggingface_hub import logging
|
| 36 |
-
logging.set_verbosity_error()
|
| 37 |
-
logging.set_verbosity_warning()
|
| 38 |
-
logging.set_verbosity_info()
|
| 39 |
-
logging.set_verbosity_debug()
|
| 40 |
-
# Suppress excessive logs from external libraries
|
| 41 |
-
warnings.filterwarnings("ignore")
|
| 42 |
-
|
| 43 |
-
# ==============================================================================
|
| 44 |
-
# --- INITIAL SETUP & CONFIGURATION ---
|
| 45 |
-
# ==============================================================================
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
# --- CONSTANTS ---
|
| 50 |
-
DEPS_DIR = Path("/data")
|
| 51 |
-
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
|
| 52 |
-
BASE_CONFIG_PATH = LTX_VIDEO_REPO_DIR / "configs"
|
| 53 |
-
DEFAULT_CONFIG_FILE = BASE_CONFIG_PATH / "ltxv-13b-0.9.8-distilled-fp8.yaml"
|
| 54 |
-
LTX_REPO_ID = "Lightricks/LTX-Video"
|
| 55 |
-
RESULTS_DIR = Path("/app/output")
|
| 56 |
-
DEFAULT_FPS = 24.0
|
| 57 |
-
FRAMES_ALIGNMENT = 8
|
| 58 |
-
|
| 59 |
-
def add_deps_to_path():
|
| 60 |
-
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
|
| 61 |
-
if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path:
|
| 62 |
-
sys.path.insert(0, repo_path)
|
| 63 |
-
print(f"[DEBUG] Repo adicionado ao sys.path: {repo_path}")
|
| 64 |
-
add_deps_to_path()
|
| 65 |
-
|
| 66 |
-
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline
|
| 67 |
-
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
|
| 68 |
-
from ltx_video.models.autoencoders.vae_encode import un_normalize_latents, normalize_latents
|
| 69 |
-
from ltx_video.pipelines.pipeline_ltx_video import adain_filter_latent
|
| 70 |
-
from api.ltx.inference import (
|
| 71 |
-
create_ltx_video_pipeline,
|
| 72 |
-
create_latent_upsampler,
|
| 73 |
-
load_image_to_tensor_with_resize_and_crop,
|
| 74 |
-
seed_everething,
|
| 75 |
-
)
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
# ==============================================================================
|
| 80 |
-
# --- UTILITY & HELPER FUNCTIONS ---
|
| 81 |
-
# ==============================================================================
|
| 82 |
-
|
| 83 |
-
def seed_everything(seed: int):
|
| 84 |
-
"""Sets the seed for reproducibility across all relevant libraries."""
|
| 85 |
-
random.seed(seed)
|
| 86 |
-
os.environ['PYTHONHASHSEED'] = str(seed)
|
| 87 |
-
np.random.seed(seed)
|
| 88 |
-
torch.manual_seed(seed)
|
| 89 |
-
torch.cuda.manual_seed_all(seed)
|
| 90 |
-
# Potentially faster, but less reproducible
|
| 91 |
-
# torch.backends.cudnn.deterministic = False
|
| 92 |
-
# torch.backends.cudnn.benchmark = True
|
| 93 |
-
|
| 94 |
-
def calculate_padding(orig_h: int, orig_w: int, target_h: int, target_w: int) -> Tuple[int, int, int, int]:
|
| 95 |
-
"""Calculates symmetric padding values to reach a target dimension."""
|
| 96 |
-
pad_h = target_h - orig_h
|
| 97 |
-
pad_w = target_w - orig_w
|
| 98 |
-
pad_top = pad_h // 2
|
| 99 |
-
pad_bottom = pad_h - pad_top
|
| 100 |
-
pad_left = pad_w // 2
|
| 101 |
-
pad_right = pad_w - pad_left
|
| 102 |
-
return (pad_left, pad_right, pad_top, pad_bottom)
|
| 103 |
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
if not isinstance(tensor, torch.Tensor):
|
| 107 |
-
logging.debug(f"'{name}' is not a tensor.")
|
| 108 |
-
return
|
| 109 |
-
|
| 110 |
-
info_str = (
|
| 111 |
-
f"--- Tensor: {name} ---\n"
|
| 112 |
-
f" - Shape: {tuple(tensor.shape)}\n"
|
| 113 |
-
f" - Dtype: {tensor.dtype}\n"
|
| 114 |
-
f" - Device: {tensor.device}\n"
|
| 115 |
-
)
|
| 116 |
-
if tensor.numel() > 0:
|
| 117 |
-
try:
|
| 118 |
-
info_str += (
|
| 119 |
-
f" - Min: {tensor.min().item():.4f} | "
|
| 120 |
-
f"Max: {tensor.max().item():.4f} | "
|
| 121 |
-
f"Mean: {tensor.mean().item():.4f}\n"
|
| 122 |
-
)
|
| 123 |
-
except Exception:
|
| 124 |
-
pass # Fails on some dtypes
|
| 125 |
-
logging.debug(info_str + "----------------------")
|
| 126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
-
#
|
| 129 |
-
|
| 130 |
-
|
| 131 |
|
| 132 |
-
|
|
|
|
| 133 |
"""
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
video generation (low-resolution, upscale).
|
| 137 |
"""
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
# 2. Carregar a configuração e os modelos (na CPU, como a função _load_models faz)
|
| 149 |
-
self.config = self._load_config()
|
| 150 |
-
self.pipeline, self.latent_upsampler = self._load_models()
|
| 151 |
-
|
| 152 |
-
# 3. Mover os modelos para o dispositivo alvo e definir `self.device`
|
| 153 |
-
self.move_to_device(target_device) # Usando a função que já criamos!
|
| 154 |
-
|
| 155 |
-
# 4. Configurar o resto dos componentes com o dispositivo correto
|
| 156 |
-
self._apply_precision_policy()
|
| 157 |
-
vae_manager_singleton.attach_pipeline(
|
| 158 |
-
self.pipeline,
|
| 159 |
-
device=self.device, # Agora `self.device` está correto
|
| 160 |
-
autocast_dtype=self.runtime_autocast_dtype
|
| 161 |
-
)
|
| 162 |
-
self._tmp_dirs = set()
|
| 163 |
-
print(f"[DEBUG] VideoService pronto. boot_time={time.perf_counter()-t0:.3f}s")
|
| 164 |
-
|
| 165 |
-
# A função move_to_device que criamos antes é essencial aqui
|
| 166 |
-
def move_to_device(self, device):
|
| 167 |
-
"""Move os modelos do pipeline para o dispositivo especificado."""
|
| 168 |
-
print(f"[LTX] Movendo modelos para {device}...")
|
| 169 |
-
self.device = torch.device(device) # Garante que é um objeto torch.device
|
| 170 |
-
self.pipeline.to(self.device)
|
| 171 |
-
if self.latent_upsampler:
|
| 172 |
-
self.latent_upsampler.to(self.device)
|
| 173 |
-
print(f"[LTX] Modelos agora estão em {self.device}.")
|
| 174 |
-
|
| 175 |
-
def move_to_cpu(self):
|
| 176 |
-
"""Move os modelos para a CPU para liberar VRAM."""
|
| 177 |
-
self.move_to_device(torch.device("cpu"))
|
| 178 |
-
if torch.cuda.is_available():
|
| 179 |
-
torch.cuda.empty_cache()
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
# ==========================================================================
|
| 183 |
-
# --- LIFECYCLE & MODEL MANAGEMENT ---
|
| 184 |
-
# ==========================================================================
|
| 185 |
-
|
| 186 |
-
def _load_config(self):
|
| 187 |
-
base = LTX_VIDEO_REPO_DIR / "configs"
|
| 188 |
-
config_path = base / "ltxv-13b-0.9.8-distilled-fp8.yaml"
|
| 189 |
-
with open(config_path, "r") as file:
|
| 190 |
-
return yaml.safe_load(file)
|
| 191 |
-
|
| 192 |
-
def finalize(self, keep_paths=None, extra_paths=None, clear_gpu=True):
|
| 193 |
-
print("[DEBUG] Finalize: iniciando limpeza...")
|
| 194 |
-
keep = set(keep_paths or []); extras = set(extra_paths or [])
|
| 195 |
-
gc.collect()
|
| 196 |
-
try:
|
| 197 |
-
if clear_gpu and torch.cuda.is_available():
|
| 198 |
-
torch.cuda.empty_cache()
|
| 199 |
-
try:
|
| 200 |
-
torch.cuda.ipc_collect()
|
| 201 |
-
except Exception:
|
| 202 |
-
pass
|
| 203 |
-
except Exception as e:
|
| 204 |
-
print(f"[DEBUG] Finalize: limpeza GPU falhou: {e}")
|
| 205 |
-
|
| 206 |
-
def _load_models(self):
|
| 207 |
-
t0 = time.perf_counter()
|
| 208 |
-
LTX_REPO = "Lightricks/LTX-Video"
|
| 209 |
-
print("[DEBUG] Baixando checkpoint principal...")
|
| 210 |
-
distilled_model_path = hf_hub_download(
|
| 211 |
-
repo_id=LTX_REPO,
|
| 212 |
-
filename=self.config["checkpoint_path"],
|
| 213 |
-
local_dir=os.getenv("HF_HOME"),
|
| 214 |
-
cache_dir=os.getenv("HF_HOME_CACHE"),
|
| 215 |
-
token=os.getenv("HF_TOKEN"),
|
| 216 |
-
)
|
| 217 |
-
self.config["checkpoint_path"] = distilled_model_path
|
| 218 |
-
print(f"[DEBUG] Checkpoint em: {distilled_model_path}")
|
| 219 |
-
|
| 220 |
-
print("[DEBUG] Baixando upscaler espacial...")
|
| 221 |
-
spatial_upscaler_path = hf_hub_download(
|
| 222 |
-
repo_id=LTX_REPO,
|
| 223 |
-
filename=self.config["spatial_upscaler_model_path"],
|
| 224 |
-
local_dir=os.getenv("HF_HOME"),
|
| 225 |
-
cache_dir=os.getenv("HF_HOME_CACHE"),
|
| 226 |
-
token=os.getenv("HF_TOKEN")
|
| 227 |
-
)
|
| 228 |
-
self.config["spatial_upscaler_model_path"] = spatial_upscaler_path
|
| 229 |
-
print(f"[DEBUG] Upscaler em: {spatial_upscaler_path}")
|
| 230 |
-
|
| 231 |
-
print("[DEBUG] Construindo pipeline...")
|
| 232 |
-
pipeline = create_ltx_video_pipeline(
|
| 233 |
-
ckpt_path=self.config["checkpoint_path"],
|
| 234 |
-
precision=self.config["precision"],
|
| 235 |
-
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
|
| 236 |
-
sampler=self.config["sampler"],
|
| 237 |
-
device="cpu",
|
| 238 |
-
enhance_prompt=False,
|
| 239 |
-
prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"],
|
| 240 |
-
prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"],
|
| 241 |
-
)
|
| 242 |
-
print("[DEBUG] Pipeline pronto.")
|
| 243 |
-
|
| 244 |
-
latent_upsampler = None
|
| 245 |
-
if self.config.get("spatial_upscaler_model_path"):
|
| 246 |
-
print("[DEBUG] Construindo latent_upsampler...")
|
| 247 |
-
latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu")
|
| 248 |
-
print("[DEBUG] Upsampler pronto.")
|
| 249 |
-
print(f"[DEBUG] _load_models() tempo total={time.perf_counter()-t0:.3f}s")
|
| 250 |
-
return pipeline, latent_upsampler
|
| 251 |
-
|
| 252 |
-
def _apply_precision_policy(self):
|
| 253 |
-
prec = str(self.config.get("precision", "")).lower()
|
| 254 |
-
self.runtime_autocast_dtype = torch.float32
|
| 255 |
-
if prec in ["float8_e4m3fn", "bfloat16"]:
|
| 256 |
-
self.runtime_autocast_dtype = torch.bfloat16
|
| 257 |
-
elif prec == "mixed_precision":
|
| 258 |
-
self.runtime_autocast_dtype = torch.float16
|
| 259 |
-
|
| 260 |
-
def _register_tmp_dir(self, d: str):
|
| 261 |
-
if d and os.path.isdir(d):
|
| 262 |
-
self._tmp_dirs.add(d); print(f"[DEBUG] Registrado tmp dir: {d}")
|
| 263 |
-
|
| 264 |
-
@torch.no_grad()
|
| 265 |
-
def _upsample_latents_internal(self, latents: torch.Tensor) -> torch.Tensor:
|
| 266 |
-
try:
|
| 267 |
-
if not self.latent_upsampler:
|
| 268 |
-
raise ValueError("Latent Upsampler não está carregado.")
|
| 269 |
-
latents_unnormalized = un_normalize_latents(latents, self.pipeline.vae, vae_per_channel_normalize=True)
|
| 270 |
-
upsampled_latents = self.latent_upsampler(latents_unnormalized)
|
| 271 |
-
return normalize_latents(upsampled_latents, self.pipeline.vae, vae_per_channel_normalize=True)
|
| 272 |
-
except Exception as e:
|
| 273 |
-
pass
|
| 274 |
-
finally:
|
| 275 |
-
torch.cuda.empty_cache()
|
| 276 |
-
torch.cuda.ipc_collect()
|
| 277 |
-
self.finalize(keep_paths=[])
|
| 278 |
-
|
| 279 |
-
def _prepare_conditioning_tensor(self, filepath, height, width, padding_values):
|
| 280 |
-
tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width)
|
| 281 |
-
tensor = torch.nn.functional.pad(tensor, padding_values)
|
| 282 |
-
log_tensor_info(tensor, f"_prepare_conditioning_tensor")
|
| 283 |
-
return tensor.to(self.device, dtype=self.runtime_autocast_dtype)
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
def _save_and_log_video(self, pixel_tensor, base_filename, fps, temp_dir, results_dir, used_seed, progress_callback=None):
|
| 287 |
-
output_path = os.path.join(temp_dir, f"{base_filename}_.mp4")
|
| 288 |
-
video_encode_tool_singleton.save_video_from_tensor(
|
| 289 |
-
pixel_tensor, output_path, fps=fps, progress_callback=progress_callback
|
| 290 |
-
)
|
| 291 |
-
final_path = os.path.join(results_dir, f"{base_filename}_.mp4")
|
| 292 |
-
shutil.move(output_path, final_path)
|
| 293 |
-
print(f"[DEBUG] Vídeo salvo em: {final_path}")
|
| 294 |
-
return final_path
|
| 295 |
-
|
| 296 |
-
def _load_tensor(self, caminho):
|
| 297 |
-
# Se já é um tensor, retorna diretamente
|
| 298 |
-
if isinstance(caminho, torch.Tensor):
|
| 299 |
-
return caminho
|
| 300 |
-
# Se é bytes, carrega do buffer
|
| 301 |
-
if isinstance(caminho, (bytes, bytearray)):
|
| 302 |
-
return torch.load(io.BytesIO(caminho))
|
| 303 |
-
# Caso contrário, assume que é um caminho de arquivo
|
| 304 |
-
return torch.load(caminho)
|
| 305 |
-
|
| 306 |
-
# ==========================================================================
|
| 307 |
-
# --- PUBLIC ORCHESTRATORS ---
|
| 308 |
-
# These are the main entry points called by the frontend.
|
| 309 |
-
# ==========================================================================
|
| 310 |
-
|
| 311 |
-
def generate_narrative_low(self, prompt: str, **kwargs) -> Tuple[Optional[str], Optional[str], Optional[int]]:
|
| 312 |
"""
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
Returns:
|
| 316 |
-
A tuple of (video_path, latents_path, used_seed).
|
| 317 |
"""
|
| 318 |
-
|
| 319 |
-
used_seed = self._resolve_seed(kwargs.get("seed"))
|
| 320 |
-
seed_everything(used_seed)
|
| 321 |
-
|
| 322 |
-
prompt_list = [p.strip() for p in prompt.splitlines() if p.strip()]
|
| 323 |
-
if not prompt_list:
|
| 324 |
-
raise ValueError("Prompt is empty or contains no valid lines.")
|
| 325 |
-
|
| 326 |
-
num_chunks = len(prompt_list)
|
| 327 |
-
total_frames = self._calculate_aligned_frames(kwargs.get("duration", 4.0))
|
| 328 |
-
frames_per_chunk = (total_frames // num_chunks // FRAMES_ALIGNMENT) * FRAMES_ALIGNMENT
|
| 329 |
-
overlap_frames = self.config.get("overlap_frames", 8)
|
| 330 |
-
|
| 331 |
-
all_latents_paths = []
|
| 332 |
-
overlap_condition_item = None
|
| 333 |
-
|
| 334 |
try:
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
|
|
|
|
|
|
| 357 |
|
| 358 |
-
|
| 359 |
-
if i < num_chunks - 1:
|
| 360 |
-
overlap_latents = chunk_latents[:, :, -overlap_frames:, :, :].clone()
|
| 361 |
-
log_tensor_info(overlap_latents, f"Overlap Latents from chunk {i+1}")
|
| 362 |
-
overlap_condition_item = ConditioningItem(
|
| 363 |
-
media_item=overlap_latents, media_frame_number=0, conditioning_strength=1.0
|
| 364 |
-
)
|
| 365 |
-
|
| 366 |
-
# Trim the overlap from the current chunk before saving
|
| 367 |
-
if i > 0:
|
| 368 |
-
chunk_latents = chunk_latents[:, :, overlap_frames:, :, :]
|
| 369 |
-
|
| 370 |
-
# Save chunk latents to disk to manage memory
|
| 371 |
-
chunk_path = RESULTS_DIR / f"chunk_{i}_{used_seed}.pt"
|
| 372 |
-
torch.save(chunk_latents.cpu(), chunk_path)
|
| 373 |
-
all_latents_paths.append(chunk_path)
|
| 374 |
|
| 375 |
-
|
| 376 |
-
|
|
|
|
| 377 |
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
|
|
|
|
|
|
| 382 |
finally:
|
| 383 |
-
#
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
def
|
| 391 |
-
"""
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
Returns:
|
| 395 |
-
A tuple of (video_path, latents_path, used_seed).
|
| 396 |
-
"""
|
| 397 |
-
logging.info("Starting single-prompt low-res generation...")
|
| 398 |
-
used_seed = self._resolve_seed(kwargs.get("seed"))
|
| 399 |
-
seed_everything(used_seed)
|
| 400 |
-
|
| 401 |
try:
|
| 402 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 403 |
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
conditioning_items=kwargs.get("initial_conditions", []),
|
| 408 |
-
**kwargs
|
| 409 |
-
)
|
| 410 |
-
|
| 411 |
-
if final_latents is None:
|
| 412 |
-
raise RuntimeError("Failed to generate latents.")
|
| 413 |
-
|
| 414 |
-
# Save latents to a single file, then decode and save video
|
| 415 |
-
latents_path = RESULTS_DIR / f"single_{used_seed}.pt"
|
| 416 |
-
torch.save(final_latents.cpu(), latents_path)
|
| 417 |
-
return self._finalize_generation([latents_path], "single_video", used_seed)
|
| 418 |
-
|
| 419 |
-
except Exception as e:
|
| 420 |
-
logging.error(f"Error during single generation: {e}")
|
| 421 |
-
traceback.print_exc()
|
| 422 |
-
return None, None, None
|
| 423 |
finally:
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
# ==========================================================================
|
| 430 |
-
|
| 431 |
-
def _generate_single_chunk_low(
|
| 432 |
-
self, prompt: str, negative_prompt: str, height: int, width: int, num_frames: int, seed: int,
|
| 433 |
-
conditioning_items: List[ConditioningItem], ltx_configs_override: Optional[Dict], **kwargs
|
| 434 |
-
) -> Optional[torch.Tensor]:
|
| 435 |
-
"""
|
| 436 |
-
[WORKER] Generates a single chunk of latents. This is the core generation unit.
|
| 437 |
-
Returns the raw latents tensor on the target device, or None on failure.
|
| 438 |
-
"""
|
| 439 |
-
height_padded, width_padded = (self._align(d) for d in (height, width))
|
| 440 |
-
downscale_factor = self.config.get("downscale_factor", 0.6666666)
|
| 441 |
-
vae_scale_factor = self.pipeline.vae_scale_factor
|
| 442 |
-
|
| 443 |
-
downscaled_height = self._align(int(height_padded * downscale_factor), vae_scale_factor)
|
| 444 |
-
downscaled_width = self._align(int(width_padded * downscale_factor), vae_scale_factor)
|
| 445 |
-
|
| 446 |
-
first_pass_config = self.config.get("first_pass", {}).copy()
|
| 447 |
-
if ltx_configs_override:
|
| 448 |
-
first_pass_config.update(self._prepare_guidance_overrides(ltx_configs_override))
|
| 449 |
-
|
| 450 |
-
pipeline_kwargs = {
|
| 451 |
-
"prompt": prompt,
|
| 452 |
-
"negative_prompt": negative_prompt,
|
| 453 |
-
"height": downscaled_height,
|
| 454 |
-
"width": downscaled_width,
|
| 455 |
-
"num_frames": num_frames,
|
| 456 |
-
"frame_rate": DEFAULT_FPS,
|
| 457 |
-
"generator": torch.Generator(device=self.device).manual_seed(seed),
|
| 458 |
-
"output_type": "latent",
|
| 459 |
-
"conditioning_items": conditioning_items,
|
| 460 |
-
**first_pass_config
|
| 461 |
-
}
|
| 462 |
-
|
| 463 |
-
logging.debug(f"Pipeline call args: { {k: v for k, v in pipeline_kwargs.items() if k != 'conditioning_items'} }")
|
| 464 |
-
|
| 465 |
-
with torch.autocast(device_type=self.device.type, dtype=self.runtime_autocast_dtype, enabled=self.device.type == 'cuda'):
|
| 466 |
-
latents_raw = self.pipeline(**pipeline_kwargs).images
|
| 467 |
-
|
| 468 |
-
log_tensor_info(latents_raw, f"Raw Latents for '{prompt[:40]}...'")
|
| 469 |
-
return latents_raw
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
# ==========================================================================
|
| 473 |
-
# --- HELPERS & UTILITY METHODS ---
|
| 474 |
-
# ==========================================================================
|
| 475 |
-
|
| 476 |
-
def _finalize_generation(self, latents_paths: List[Path], base_filename: str, seed: int) -> Tuple[str, str, int]:
|
| 477 |
-
"""
|
| 478 |
-
Loads latents from paths, concatenates them, decodes to video, and saves both.
|
| 479 |
-
"""
|
| 480 |
-
logging.info("Finalizing generation: decoding latents to video.")
|
| 481 |
-
# Load all tensors and concatenate them on the CPU first
|
| 482 |
-
all_tensors_cpu = [torch.load(p) for p in latents_paths]
|
| 483 |
-
final_latents_cpu = torch.cat(all_tensors_cpu, dim=2)
|
| 484 |
-
|
| 485 |
-
# Save final combined latents
|
| 486 |
-
final_latents_path = RESULTS_DIR / f"latents_{base_filename}_{seed}.pt"
|
| 487 |
-
torch.save(final_latents_cpu, final_latents_path)
|
| 488 |
-
logging.info(f"Final latents saved to: {final_latents_path}")
|
| 489 |
-
|
| 490 |
-
# Move to GPU for decoding
|
| 491 |
-
final_latents_gpu = final_latents_cpu.to(self.device)
|
| 492 |
-
log_tensor_info(final_latents_gpu, "Final Concatenated Latents")
|
| 493 |
-
|
| 494 |
-
with torch.autocast(device_type=self.device.type, dtype=self.runtime_autocast_dtype, enabled=self.device.type == 'cuda'):
|
| 495 |
-
pixel_tensor = vae_manager_singleton.decode(
|
| 496 |
-
final_latents_gpu,
|
| 497 |
-
decode_timestep=float(self.config.get("decode_timestep", 0.05))
|
| 498 |
-
)
|
| 499 |
-
|
| 500 |
-
video_path = self._save_and_log_video(pixel_tensor, f"{base_filename}_{seed}")
|
| 501 |
-
return str(video_path), str(final_latents_path), seed
|
| 502 |
-
|
| 503 |
-
def prepare_condition_items(self, items_list: List, height: int, width: int, num_frames: int) -> List[ConditioningItem]:
|
| 504 |
-
"""Prepares a list of ConditioningItem objects from file paths or tensors."""
|
| 505 |
-
if not items_list:
|
| 506 |
-
return []
|
| 507 |
-
|
| 508 |
-
height_padded, width_padded = self._align(height), self._align(width)
|
| 509 |
-
padding_values = calculate_padding(height, width, height_padded, width_padded)
|
| 510 |
-
|
| 511 |
-
conditioning_items = []
|
| 512 |
-
for media, frame, weight in items_list:
|
| 513 |
-
tensor = self._prepare_conditioning_tensor(media, height, width, padding_values)
|
| 514 |
-
safe_frame = max(0, min(int(frame), num_frames - 1))
|
| 515 |
-
conditioning_items.append(ConditioningItem(tensor, safe_frame, float(weight)))
|
| 516 |
-
return conditioning_items
|
| 517 |
-
|
| 518 |
-
def _prepare_conditioning_tensor(self, media_path: str, height: int, width: int, padding: Tuple) -> torch.Tensor:
|
| 519 |
-
"""Loads and processes an image to be a conditioning tensor."""
|
| 520 |
-
tensor = load_image_to_tensor_with_resize_and_crop(media_path, height, width)
|
| 521 |
-
tensor = torch.nn.functional.pad(tensor, padding)
|
| 522 |
-
log_tensor_info(tensor, f"Prepared Conditioning Tensor from {media_path}")
|
| 523 |
-
return tensor.to(self.device, dtype=self.runtime_autocast_dtype)
|
| 524 |
-
|
| 525 |
-
def _prepare_guidance_overrides(self, ltx_configs: Dict) -> Dict:
|
| 526 |
-
"""Parses UI presets for guidance into pipeline-compatible arguments."""
|
| 527 |
-
overrides = {}
|
| 528 |
-
preset = ltx_configs.get("guidance_preset", "Padrão (Recomendado)")
|
| 529 |
-
|
| 530 |
-
# Default LTX values are used if preset is 'Padrão'
|
| 531 |
-
if preset == "Agressivo":
|
| 532 |
-
overrides["guidance_scale"] = [1, 2, 8, 12, 8, 2, 1]
|
| 533 |
-
overrides["stg_scale"] = [0, 0, 5, 6, 5, 3, 2]
|
| 534 |
-
elif preset == "Suave":
|
| 535 |
-
overrides["guidance_scale"] = [1, 1, 4, 5, 4, 1, 1]
|
| 536 |
-
overrides["stg_scale"] = [0, 0, 2, 2, 2, 1, 0]
|
| 537 |
-
elif preset == "Customizado":
|
| 538 |
-
try:
|
| 539 |
-
overrides["guidance_scale"] = json.loads(ltx_configs["guidance_scale_list"])
|
| 540 |
-
overrides["stg_scale"] = json.loads(ltx_configs["stg_scale_list"])
|
| 541 |
-
except (json.JSONDecodeError, KeyError) as e:
|
| 542 |
-
logging.warning(f"Failed to parse custom guidance values: {e}. Falling back to defaults.")
|
| 543 |
-
|
| 544 |
-
if overrides:
|
| 545 |
-
logging.info(f"Applying '{preset}' guidance preset overrides.")
|
| 546 |
-
return overrides
|
| 547 |
-
|
| 548 |
-
def _save_and_log_video(self, pixel_tensor: torch.Tensor, base_filename: str) -> Path:
|
| 549 |
-
"""Saves a pixel tensor to an MP4 file and returns the final path."""
|
| 550 |
-
# Work in a temporary directory to handle atomic move
|
| 551 |
-
with tempfile.TemporaryDirectory() as temp_dir:
|
| 552 |
-
temp_path = os.path.join(temp_dir, f"{base_filename}.mp4")
|
| 553 |
-
video_encode_tool_singleton.save_video_from_tensor(
|
| 554 |
-
pixel_tensor, temp_path, fps=DEFAULT_FPS
|
| 555 |
-
)
|
| 556 |
-
final_path = RESULTS_DIR / f"{base_filename}.mp4"
|
| 557 |
-
shutil.move(temp_path, final_path)
|
| 558 |
-
logging.info(f"Video saved successfully to: {final_path}")
|
| 559 |
-
return final_path
|
| 560 |
-
|
| 561 |
-
def _apply_precision_policy(self):
|
| 562 |
-
"""Sets the autocast dtype based on the configuration file."""
|
| 563 |
-
precision = str(self.config.get("precision", "bfloat16")).lower()
|
| 564 |
-
if precision in ["float8_e4m3fn", "bfloat16"]:
|
| 565 |
-
self.runtime_autocast_dtype = torch.bfloat16
|
| 566 |
-
elif precision == "mixed_precision":
|
| 567 |
-
self.runtime_autocast_dtype = torch.float16
|
| 568 |
-
else:
|
| 569 |
-
self.runtime_autocast_dtype = torch.float32
|
| 570 |
-
logging.info(f"Runtime precision policy set for autocast: {self.runtime_autocast_dtype}")
|
| 571 |
|
| 572 |
-
def
|
| 573 |
-
"""
|
| 574 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 575 |
|
| 576 |
-
def
|
| 577 |
-
"""
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
# ==============================================================================
|
| 590 |
-
# --- SINGLETON INSTANTIATION ---
|
| 591 |
-
# ==============================================================================
|
| 592 |
-
# The service is instantiated once when the module is imported, ensuring a single
|
| 593 |
-
# instance manages the models and GPU resources throughout the application's life.
|
| 594 |
-
|
| 595 |
try:
|
| 596 |
-
|
| 597 |
-
|
| 598 |
except Exception as e:
|
| 599 |
-
|
| 600 |
traceback.print_exc()
|
| 601 |
-
|
| 602 |
-
sys.exit(1)
|
|
|
|
| 1 |
+
# FILE: api/vince_pool_manager.py
|
| 2 |
+
# DESCRIPTION: Singleton manager for a pool of VINCIE workers, integrated with a central GPU manager.
|
|
|
|
| 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import sys
|
|
|
|
| 6 |
import gc
|
| 7 |
+
import subprocess
|
| 8 |
+
import threading
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
from typing import List
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
import torch
|
| 13 |
+
from omegaconf import open_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
# --- Import do Gerenciador Central de GPUs ---
|
| 16 |
+
# Esta é a peça chave da integração. O Pool Manager perguntará a ele quais GPUs usar.
|
| 17 |
+
try:
|
| 18 |
+
from api.gpu_manager import gpu_manager
|
| 19 |
+
except ImportError as e:
|
| 20 |
+
print(f"ERRO CRÍTICO: Não foi possível importar o gpu_manager. {e}", file=sys.stderr)
|
| 21 |
+
sys.exit(1)
|
| 22 |
|
| 23 |
+
# --- Configurações Globais (Lidas do Ambiente) ---
|
| 24 |
+
VINCIE_DIR = Path(os.getenv("VINCIE_DIR", "/data/VINCIE"))
|
| 25 |
+
VINCIE_CKPT_DIR = Path(os.getenv("VINCIE_CKPT_DIR", "/data/ckpt/VINCIE-3B"))
|
| 26 |
|
| 27 |
+
# --- Classe Worker (Gerencia uma única GPU de forma isolada) ---
|
| 28 |
+
class VinceWorker:
|
| 29 |
"""
|
| 30 |
+
Gerencia uma única instância da pipeline VINCIE em um dispositivo GPU específico.
|
| 31 |
+
Opera em um ambiente "isolado" para garantir que só veja sua própria GPU.
|
|
|
|
| 32 |
"""
|
| 33 |
+
def __init__(self, device_id: str, config_path: str):
|
| 34 |
+
self.device_id_str = device_id
|
| 35 |
+
self.gpu_index_str = self.device_id_str.split(':')[-1]
|
| 36 |
+
self.config_path = config_path
|
| 37 |
+
self.gen = None
|
| 38 |
+
self.config = None
|
| 39 |
+
print(f"[VinceWorker-{self.device_id_str}] Inicializado. Mapeado para o índice de GPU físico {self.gpu_index_str}.")
|
| 40 |
+
|
| 41 |
+
def _execute_in_isolated_env(self, function_to_run, *args, **kwargs):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
"""
|
| 43 |
+
Wrapper crucial que define CUDA_VISIBLE_DEVICES para isolar a visibilidade da GPU.
|
| 44 |
+
Isso garante que o PyTorch e o VINCIE só possam usar a GPU designada para este worker.
|
|
|
|
|
|
|
| 45 |
"""
|
| 46 |
+
original_cuda_visible = os.environ.get('CUDA_VISIBLE_DEVICES')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
try:
|
| 48 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = self.gpu_index_str
|
| 49 |
+
if torch.cuda.is_available():
|
| 50 |
+
# Dentro deste contexto, 'cuda:0' refere-se à nossa GPU alvo, pois é a única visível.
|
| 51 |
+
torch.cuda.set_device(0)
|
| 52 |
+
return function_to_run(*args, **kwargs)
|
| 53 |
+
finally:
|
| 54 |
+
# Restaura o ambiente original para não afetar outros threads/processos.
|
| 55 |
+
if original_cuda_visible is not None:
|
| 56 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = original_cuda_visible
|
| 57 |
+
elif 'CUDA_VISIBLE_DEVICES' in os.environ:
|
| 58 |
+
del os.environ['CUDA_VISIBLE_DEVICES']
|
| 59 |
+
|
| 60 |
+
def _load_model_task(self):
|
| 61 |
+
"""Tarefa de carregamento do modelo, executada no ambiente isolado."""
|
| 62 |
+
print(f"[VinceWorker-{self.device_id_str}] Carregando modelo para VRAM (GPU física visível: {self.gpu_index_str})...")
|
| 63 |
+
# O dispositivo para o VINCIE será 'cuda:0' porque é a única GPU que este processo pode ver.
|
| 64 |
+
device_for_vincie = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
| 65 |
+
|
| 66 |
+
original_cwd = Path.cwd()
|
| 67 |
+
try:
|
| 68 |
+
# O código do VINCIE pode precisar ser executado de seu próprio diretório.
|
| 69 |
+
os.chdir(str(VINCIE_DIR))
|
| 70 |
+
# Adiciona o diretório ao path do sistema para encontrar os módulos do VINCIE.
|
| 71 |
+
if str(VINCIE_DIR) not in sys.path: sys.path.insert(0, str(VINCIE_DIR))
|
| 72 |
|
| 73 |
+
from common.config import load_config, create_object
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
+
cfg = load_config(self.config_path, [f"device='{device_for_vincie}'"])
|
| 76 |
+
self.gen = create_object(cfg)
|
| 77 |
+
self.config = cfg
|
| 78 |
|
| 79 |
+
# Executa os passos de configuração internos do VINCIE.
|
| 80 |
+
for name in ("configure_persistence", "configure_models", "configure_diffusion"):
|
| 81 |
+
getattr(self.gen, name)()
|
| 82 |
+
|
| 83 |
+
self.gen.to(torch.device(device_for_vincie))
|
| 84 |
+
print(f"[VinceWorker-{self.device_id_str}] ✅ Modelo VINCIE 'quente' e pronto na GPU física {self.gpu_index_str}.")
|
| 85 |
finally:
|
| 86 |
+
os.chdir(original_cwd) # Restaura o diretório de trabalho original.
|
| 87 |
+
|
| 88 |
+
def load_model_to_gpu(self):
|
| 89 |
+
"""Método público para carregar o modelo, garantindo o isolamento da GPU."""
|
| 90 |
+
if self.gen is None:
|
| 91 |
+
self._execute_in_isolated_env(self._load_model_task)
|
| 92 |
+
|
| 93 |
+
def _infer_task(self, **kwargs) -> Path:
|
| 94 |
+
"""Tarefa de inferência, executada no ambiente isolado."""
|
| 95 |
+
original_cwd = Path.cwd()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
try:
|
| 97 |
+
os.chdir(str(VINCIE_DIR))
|
| 98 |
+
|
| 99 |
+
# Atualiza a configuração do gerador com os parâmetros da chamada atual.
|
| 100 |
+
with open_dict(self.gen.config):
|
| 101 |
+
self.gen.config.generation.output.dir = str(kwargs["output_dir"])
|
| 102 |
+
image_paths = kwargs.get("image_path", [])
|
| 103 |
+
self.gen.config.generation.positive_prompt.image_path = [str(p) for p in image_paths] if isinstance(image_paths, list) else [str(image_paths)]
|
| 104 |
+
if "prompts" in kwargs:
|
| 105 |
+
self.gen.config.generation.positive_prompt.prompts = list(kwargs["prompts"])
|
| 106 |
+
if "cfg_scale" in kwargs and kwargs["cfg_scale"] is not None:
|
| 107 |
+
self.gen.config.diffusion.cfg.scale = float(kwargs["cfg_scale"])
|
| 108 |
|
| 109 |
+
# Inicia o loop de inferência do VINCIE.
|
| 110 |
+
self.gen.inference_loop()
|
| 111 |
+
return Path(kwargs["output_dir"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
finally:
|
| 113 |
+
os.chdir(original_cwd)
|
| 114 |
+
# Limpeza de memória após a inferência.
|
| 115 |
+
gc.collect()
|
| 116 |
+
if torch.cuda.is_available():
|
| 117 |
+
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
+
def infer(self, **kwargs) -> Path:
|
| 120 |
+
"""Método público para iniciar a inferência, garantindo o isolamento da GPU."""
|
| 121 |
+
if self.gen is None:
|
| 122 |
+
raise RuntimeError(f"Modelo no worker {self.device_id_str} não foi carregado.")
|
| 123 |
+
return self._execute_in_isolated_env(self._infer_task, **kwargs)
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
# --- Classe Pool Manager (A Orquestradora Singleton) ---
|
| 127 |
+
class VincePoolManager:
|
| 128 |
+
_instance = None
|
| 129 |
+
_lock = threading.Lock()
|
| 130 |
+
|
| 131 |
+
def __new__(cls, *args, **kwargs):
|
| 132 |
+
with cls._lock:
|
| 133 |
+
if cls._instance is None:
|
| 134 |
+
cls._instance = super().__new__(cls)
|
| 135 |
+
cls._instance._initialized = False
|
| 136 |
+
return cls._instance
|
| 137 |
+
|
| 138 |
+
def __init__(self, output_root: str = "/app/outputs"):
|
| 139 |
+
if self._initialized: return
|
| 140 |
+
with self._lock:
|
| 141 |
+
if self._initialized: return
|
| 142 |
+
|
| 143 |
+
print("⚙️ Inicializando o VincePoolManager Singleton...")
|
| 144 |
+
self.output_root = Path(output_root)
|
| 145 |
+
self.output_root.mkdir(parents=True, exist_ok=True)
|
| 146 |
+
self.worker_lock = threading.Lock()
|
| 147 |
+
self.next_worker_idx = 0
|
| 148 |
+
|
| 149 |
+
# Pergunta ao gerenciador central quais GPUs ele pode usar.
|
| 150 |
+
self.allocated_gpu_indices = gpu_manager.get_vincie_devices()
|
| 151 |
+
|
| 152 |
+
if not self.allocated_gpu_indices:
|
| 153 |
+
# Se não houver GPUs alocadas, não podemos continuar.
|
| 154 |
+
# O setup.py já deve ter sido executado, então não precisamos verificar dependências aqui.
|
| 155 |
+
print("AVISO: Nenhuma GPU alocada para o VINCIE pelo GPUManager. O serviço VINCIE estará inativo.")
|
| 156 |
+
self.workers = []
|
| 157 |
+
self._initialized = True
|
| 158 |
+
return
|
| 159 |
+
|
| 160 |
+
devices = [f'cuda:{i}' for i in self.allocated_gpu_indices]
|
| 161 |
+
vincie_config_path = VINCIE_DIR / "configs/generate.yaml"
|
| 162 |
+
if not vincie_config_path.exists():
|
| 163 |
+
raise FileNotFoundError(f"Arquivo de configuração do VINCIE não encontrado em {vincie_config_path}")
|
| 164 |
+
|
| 165 |
+
self.workers = [VinceWorker(dev_id, str(vincie_config_path)) for dev_id in devices]
|
| 166 |
+
|
| 167 |
+
print(f"Iniciando carregamento dos modelos em paralelo para {len(self.workers)} GPUs VINCIE...")
|
| 168 |
+
threads = [threading.Thread(target=worker.load_model_to_gpu) for worker in self.workers]
|
| 169 |
+
for t in threads: t.start()
|
| 170 |
+
for t in threads: t.join()
|
| 171 |
+
|
| 172 |
+
self._initialized = True
|
| 173 |
+
print(f"✅ VincePoolManager pronto com {len(self.workers)} workers 'quentes'.")
|
| 174 |
+
|
| 175 |
+
def _get_next_worker(self) -> VinceWorker:
|
| 176 |
+
"""Seleciona o próximo worker disponível usando uma estratégia round-robin."""
|
| 177 |
+
if not self.workers:
|
| 178 |
+
raise RuntimeError("Não há workers VINCIE disponíveis para processar a tarefa.")
|
| 179 |
+
|
| 180 |
+
with self.worker_lock:
|
| 181 |
+
worker = self.workers[self.next_worker_idx]
|
| 182 |
+
self.next_worker_idx = (self.next_worker_idx + 1) % len(self.workers)
|
| 183 |
+
print(f"Tarefa despachada para o worker: {worker.device_id_str}")
|
| 184 |
+
return worker
|
| 185 |
+
|
| 186 |
+
def generate_multi_turn(self, input_image: str, turns: List[str], **kwargs) -> Path:
|
| 187 |
+
"""Gera um vídeo a partir de uma imagem e uma sequência de prompts (turnos)."""
|
| 188 |
+
worker = self._get_next_worker()
|
| 189 |
+
out_dir = self.output_root / f"vince_multi_turn_{Path(input_image).stem}_{os.urandom(4).hex()}"
|
| 190 |
+
out_dir.mkdir(parents=True)
|
| 191 |
+
|
| 192 |
+
infer_kwargs = {"output_dir": out_dir, "image_path": input_image, "prompts": turns, **kwargs}
|
| 193 |
+
return worker.infer(**infer_kwargs)
|
| 194 |
|
| 195 |
+
def generate_multi_concept(self, concept_images: List[str], concept_prompts: List[str], final_prompt: str, **kwargs) -> Path:
|
| 196 |
+
"""Gera um vídeo a partir de múltiplas imagens-conceito e um prompt final."""
|
| 197 |
+
worker = self._get_next_worker()
|
| 198 |
+
out_dir = self.output_root / f"vince_multi_concept_{os.urandom(4).hex()}"
|
| 199 |
+
out_dir.mkdir(parents=True)
|
| 200 |
+
|
| 201 |
+
all_prompts = concept_prompts + [final_prompt]
|
| 202 |
+
infer_kwargs = {"output_dir": out_dir, "image_path": concept_images, "prompts": all_prompts, **kwargs}
|
| 203 |
+
return worker.infer(**infer_kwargs)
|
| 204 |
+
|
| 205 |
+
# --- Instância Singleton Global ---
|
| 206 |
+
# A inicialização é envolvida em um try-except para evitar que a aplicação inteira quebre
|
| 207 |
+
# se o VINCIE não puder ser inicializado por algum motivo.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
try:
|
| 209 |
+
output_root_path = os.getenv("OUTPUT_ROOT", "/app/outputs")
|
| 210 |
+
vince_pool_manager_singleton = VincePoolManager(output_root=output_root_path)
|
| 211 |
except Exception as e:
|
| 212 |
+
print(f"ERRO CRÍTICO ao inicializar o VincePoolManager: {e}", file=sys.stderr)
|
| 213 |
traceback.print_exc()
|
| 214 |
+
vince_pool_manager_singleton = None
|
|
|