eeuuia commited on
Commit
42998d3
·
verified ·
1 Parent(s): f1cdfeb

Create ltx_pool_manager.py

Browse files
Files changed (1) hide show
  1. api/ltx_pool_manager.py +97 -0
api/ltx_pool_manager.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # FILE: api/ltx_pool_manager.py
2
+ # DESCRIPTION: The "secret weapon". A pool manager for LTX that applies
3
+ # runtime patches to the pipeline for full control and ADUC-SDR compatibility.
4
+
5
+ import logging
6
+ from typing import List, Optional, Tuple, Union
7
+ from dataclasses import dataclass
8
+ import torch
9
+ from diffusers.utils.torch_utils import randn_tensor
10
+
11
+ # --- Importações da nossa arquitetura ---
12
+ from api.gpu_manager import gpu_manager
13
+ from api.ltx.ltx_utils import build_ltx_pipeline_on_cpu
14
+ from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline
15
+
16
+ # --- Definição dos nossos Data Classes ---
17
+ @dataclass
18
+ class ConditioningItem:
19
+ pixel_tensor: torch.Tensor # Sempre um tensor de pixel
20
+ media_frame_number: int
21
+ conditioning_strength: float
22
+
23
+ @dataclass
24
+ class LatentConditioningItem:
25
+ latent_tensor: torch.Tensor # Sempre um tensor latente
26
+ media_frame_number: int
27
+ conditioning_strength: float
28
+
29
+ # ==============================================================================
30
+ # --- O MONKEY PATCH ---
31
+ # Esta é a nossa versão customizada de `prepare_conditioning`
32
+ # ==============================================================================
33
+
34
+ def _aduc_prepare_conditioning_patch(
35
+ self: "LTXVideoPipeline",
36
+ conditioning_items: Optional[List[Union[ConditioningItem, LatentConditioningItem]]],
37
+ init_latents: torch.Tensor,
38
+ num_frames: int,
39
+ height: int,
40
+ width: int,
41
+ vae_per_channel_normalize: bool = False,
42
+ generator=None,
43
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
44
+
45
+ # Esta função é uma cópia modificada da sua, com logging e pequenas melhorias.
46
+
47
+ # (O código do patch que você forneceu vai aqui, ligeiramente ajustado)
48
+ # ...
49
+
50
+ return init_latents, init_pixel_coords, init_conditioning_mask, extra_conditioning_num_latents
51
+
52
+
53
+ # ==============================================================================
54
+ # --- LTX Worker e Pool Manager ---
55
+ # ==============================================================================
56
+
57
+ class LTXWorker:
58
+ """Gerencia uma instância do LTX Pipeline em um par de GPUs (main + vae)."""
59
+ def __init__(self, main_device: str, vae_device: str, config: dict):
60
+ self.main_device = torch.device(main_device)
61
+ self.vae_device = torch.device(vae_device)
62
+ self.config = config
63
+ self.pipeline: LTXVideoPipeline = None
64
+
65
+ self._load_and_patch_pipeline()
66
+
67
+ def _load_and_patch_pipeline(self):
68
+ logging.info(f"[LTXWorker-{self.main_device}] Carregando pipeline LTX para a CPU...")
69
+ self.pipeline, _ = build_ltx_pipeline_on_cpu(self.config)
70
+
71
+ logging.info(f"[LTXWorker-{self.main_device}] Movendo pipeline para GPUs (Main: {self.main_device}, VAE: {self.vae_device})...")
72
+ self.pipeline.to(self.main_device)
73
+ self.pipeline.vae.to(self.vae_device)
74
+
75
+ logging.info(f"[LTXWorker-{self.main_device}] Aplicando patch ADUC-SDR na função 'prepare_conditioning'...")
76
+ # A "mágica" do monkey patching acontece aqui
77
+ self.pipeline.prepare_conditioning = _aduc_prepare_conditioning_patch.__get__(self.pipeline, LTXVideoPipeline)
78
+ logging.info(f"[LTXWorker-{self.main_device}] ✅ Pipeline 'quente', corrigido e pronto.")
79
+
80
+
81
+ class LTXPoolManager:
82
+ # (Padrão Singleton, similar ao VincePoolManager)
83
+ # ...
84
+
85
+ def __init__(self):
86
+ # ...
87
+ main_device = gpu_manager.get_ltx_device()
88
+ vae_device = gpu_manager.get_ltx_vae_device()
89
+ # Em uma arquitetura futura, poderíamos ter múltiplos workers. Por enquanto, temos um.
90
+ self.worker = LTXWorker(str(main_device), str(vae_device), self._load_config())
91
+ # ...
92
+
93
+ def get_pipeline(self) -> LTXVideoPipeline:
94
+ return self.worker.pipeline
95
+
96
+ # Instância Singleton
97
+ ltx_pool_manager = LTXPoolManager()